A Deep Learning-Based Feature Extraction Framework for System Security Assessment

被引:106
|
作者
Sun, Mingyang [1 ]
Konstantelos, Ioannis [1 ]
Strbac, Goran [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
关键词
Deep learning; feature extraction; Monte Carlo simulation; R vine copulas; security assessment; LOGISTIC-REGRESSION; PREDICTION;
D O I
10.1109/TSG.2018.2873001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ongoing decarbonisation of modern electricity systems has led to a substantial increase of operational uncertainty, particularly due to the large-scale integration of renewable energy generation. However, the expanding space of possible operating points renders necessary the development of novel security assessment approaches. In this paper we focus on the use of security rules where classifiers are trained offline to characterize previously unseen points as safe or unsafe. This paper proposes a novel deep learning-based feature extraction framework for building security rules. We show how deep autoencoders can he used to transform the space of conventional state variables (e.g., power flows) to a small number of dimensions where we can optimally distinguish between safe and unsafe operation. The proposed framework is data-driven and can be useful in multiple applications within the context of security assessment. To achieve high accuracy, a novel objective-based loss function is proposed to address the issue of imbalanced safe/unsafe classes that characterize electricity system operation. Furthermore, an R-vine copula-based model is proposed to sample historical data and generate large populations of anticipated system states for training. The superior performance of the proposed framework is demonstrated through a series of case studies and comparisons using the load and wind generation data from the French transmission system, which have been mapped to the IEEE 118-bus system.
引用
收藏
页码:5007 / 5020
页数:14
相关论文
共 50 条
  • [41] IDDLE: A Novel Deep Learning-Based Approach for Intrusion Detection Problem Using Feature Extraction
    Goktepe, Yunus Emre
    Uzun, Yusuf
    SECURITY AND PRIVACY, 2025, 8 (01):
  • [42] Deep Learning-Based Classification and Feature Extraction for Predicting Pathogenesis of Foot Ulcers in Patients with Diabetes
    Preiya, V. Sathya
    Kumar, V. D. Ambeth
    DIAGNOSTICS, 2023, 13 (12)
  • [43] Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels
    Gonzalez, D.
    Alvarez, J.
    Sanchez, J. A.
    Godino, L.
    Pombo, I
    SENSORS, 2022, 22 (18)
  • [44] A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis
    Kaur, Gagandeep
    Sharma, Amit
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [45] A deep learning-based feature extraction of cloth data using modified grab cut segmentation
    Saranya, M. S.
    Geetha, P.
    VISUAL COMPUTER, 2023, 39 (09): : 4195 - 4211
  • [46] Deep Learning-Based Feature Extraction with MRI Data in Neuroimaging Genetics for Alzheimer's Disease
    Chakraborty, Dipnil
    Zhuang, Zhong
    Xue, Haoran
    Fiecas, Mark B.
    Shen, Xiatong
    Pan, Wei
    GENES, 2023, 14 (03)
  • [47] Dendritic Learning-Based Feature Fusion for Deep Networks
    Song, Yaotong
    Liu, Zhipeng
    Zhang, Zhiming
    Tang, Jun
    Lei, Zhenyu
    Gao, Shangce
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107 (12) : 1554 - 1557
  • [48] A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis
    Gagandeep Kaur
    Amit Sharma
    Journal of Big Data, 10
  • [49] A deep learning-based feature extraction of cloth data using modified grab cut segmentation
    M. S. Saranya
    P. Geetha
    The Visual Computer, 2023, 39 : 4195 - 4211
  • [50] Analysis and Assessment of Controllability of an Expressive Deep Learning-Based TTS System
    Tits, Noe
    El Haddad, Kevin
    Dutoit, Thierry
    INFORMATICS-BASEL, 2021, 8 (04):