Dendritic Learning-Based Feature Fusion for Deep Networks

被引:0
|
作者
Song, Yaotong [1 ]
Liu, Zhipeng [1 ]
Zhang, Zhiming [1 ]
Tang, Jun [2 ]
Lei, Zhenyu [1 ]
Gao, Shangce [1 ]
机构
[1] Univ Toyama, Fac Engn, Toyama 9308555, Japan
[2] Wicresoft Co Ltd, 13810 SE Eastgate Way, Bellevue, WA 98005 USA
基金
日本学术振兴会;
关键词
convolutional network; neural networks; dendritic neuron; feature fusion;
D O I
10.1587/transinf.2024EDL8021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep networks are undergoing rapid development. However, as the depth of networks increases, the issue of how to fuse features from different layers becomes increasingly prominent. To address this challenge, we creatively propose a cross-layer feature fusion module based on neural dendrites, termed dendritic learning-based feature fusion (DFF). Compared to other fusion methods, DFF demonstrates superior biological interpretability due to the nonlinear capabilities of dendritic neurons. By integrating the classic ResNet architecture with DFF, we devise the ResNeFt. Benefiting from the unique structure and nonlinear processing capabilities of dendritic neurons, the fused features of ResNeFt exhibit enhanced representational power. Its effectiveness and superiority have been validated on multiple medical datasets.
引用
收藏
页码:1554 / 1557
页数:4
相关论文
共 50 条
  • [1] Learning Feature Fusion in Deep Learning-Based Object Detector
    Hassan, Ehtesham
    Khalil, Yasser
    Ahmad, Imtiaz
    JOURNAL OF ENGINEERING, 2020, 2020
  • [2] Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia
    Cui, Jianfeng
    Wang, Lixin
    He, Xiangmin
    De Albuquerque, Victor Hugo C.
    AlQahtani, Salman A.
    Hassan, Mohammad Mehedi
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (22): : 16073 - 16087
  • [3] Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia
    Jianfeng Cui
    Lixin Wang
    Xiangmin He
    Victor Hugo C. De Albuquerque
    Salman A. AlQahtani
    Mohammad Mehedi Hassan
    Neural Computing and Applications, 2023, 35 : 16073 - 16087
  • [4] Handwritten Digit Recognition using Ensemble Learning with Deep Learning-based Feature Fusion
    Ankoliya, Arjav
    H., Bhadani
    H., Dalsania
    P., Goel
    8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2024 - Proceedings, 2024, : 1961 - 1966
  • [5] Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion
    Wang X.
    Wang Y.
    Chen X.
    Zang C.
    Cui G.
    Journal of Radars, 2024, 13 (03) : 554 - 564
  • [6] A Deep Learning-Based Framework for Feature Extraction and Classification of Intrusion Detection in Networks
    Naveed, Muhammad
    Arif, Fahim
    Usman, Syed Muhammad
    Anwar, Aamir
    Hadjouni, Myriam
    Elmannai, Hela
    Hussain, Saddam
    Ullah, Syed Sajid
    Umar, Fazlullah
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [7] Federated learning-based defect localization on metal surfaces using ensembled pretrained deep neural networks with feature fusion
    Kansal, Isha
    Popli, Renu
    Khanna, Divya
    Sharma, Vikas
    Sharma, Ashutosh
    Kumar, Rajeev
    Khullar, Vikas
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [8] Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion
    Abdi, Asad
    Shamsuddin, Siti Mariyam
    Hasan, Shafaatunnur
    Piran, Jalil
    INFORMATION PROCESSING & MANAGEMENT, 2019, 56 (04) : 1245 - 1259
  • [9] Deep Learning-Based Design Method for Acoustic Metasurface Dual-Feature Fusion
    Lv, Qiang
    Zhao, Huanlong
    Huang, Zhen
    Hao, Guoqiang
    Chen, Wei
    MATERIALS, 2024, 17 (09)
  • [10] Deep Learning-based Environmental Sound Classification Using Feature Fusion and Data Enhancement
    Jahangir, Rashid
    Nauman, Muhammad Asif
    Alroobaea, Roobaea
    Almotiri, Jasem
    Malik, Muhammad Mohsin
    Alzahrani, Sabah M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1069 - 1091