Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia

被引:23
|
作者
Cui, Jianfeng [1 ]
Wang, Lixin [2 ]
He, Xiangmin [2 ]
De Albuquerque, Victor Hugo C. [3 ]
AlQahtani, Salman A. [4 ]
Hassan, Mohammad Mehedi [5 ]
机构
[1] Xiamen Univ Technol, Sch Software Engn, Xiamen, Peoples R China
[2] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Peoples R China
[3] Univ Porto FEUP, Fac Engn, Dept Mech Engn, Porto, Portugal
[4] King Saud Univ, Coll Comp & Informat Sci, Comp Engn Dept, Riyadh 11543, Saudi Arabia
[5] King Saud Univ, Coll Comp & Informat Sci, Informat Syst Dept, Riyadh 11543, Saudi Arabia
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 22期
基金
中国博士后科学基金;
关键词
ECG signals; Arrhythmia classification; Feature fusion; 1D-CNN4; NEURAL-NETWORK; INTERFERENCE; DIAGNOSIS; SYSTEM;
D O I
10.1007/s00521-021-06487-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature extraction plays an important role in arrhythmia classification, and successful arrhythmia classification generally depends on ECG feature extraction. This paper proposed a feature extraction method combining traditional approaches and 1D-CNN aiming to find the optimal feature set to improve the accuracy of arrhythmia classification. The proposed method is verified by using the MIT-BIH arrhythmia benchmark database. It is found that the features extracted by 1D-CNN and discrete wavelet transform form the optimal feature set with the average classification accuracy up to 98.35%, which is better than the latest methods.
引用
收藏
页码:16073 / 16087
页数:15
相关论文
共 50 条
  • [1] Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia
    Jianfeng Cui
    Lixin Wang
    Xiangmin He
    Victor Hugo C. De Albuquerque
    Salman A. AlQahtani
    Mohammad Mehedi Hassan
    Neural Computing and Applications, 2023, 35 : 16073 - 16087
  • [2] A Deep Learning-Based Algorithm for ECG Arrhythmia Classification
    Espin-Ramos, Daniela
    Alvarado, Vicente
    Valarezo Anazco, Edwin
    Flores, Erick
    Nunez, Bolivar
    Santos, Jose
    Guerrero, Sara
    Aviles-Cedeno, Jonathan
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [3] Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review
    Xiao, Qiao
    Lee, Khuan
    Mokhtar, Siti Aisah
    Ismail, Iskasymar
    Pauzi, Ahmad Luqman bin Md
    Zhang, Qiuxia
    Lim, Poh Ying
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [4] An Ensemble of Deep Learning-Based Multi-Model for ECG Heartbeats Arrhythmia Classification
    Essa, Ehab
    Xie, Xianghua
    IEEE Access, 2021, 9 : 103452 - 103464
  • [5] An Ensemble of Deep Learning-Based Multi-Model for ECG Heartbeats Arrhythmia Classification
    Essa, Ehab
    Xie, Xianghua
    IEEE ACCESS, 2021, 9 : 103452 - 103464
  • [6] Efficient Lightweight Multimodel Deep Fusion Based on ECG for Arrhythmia Classification
    Hammad, Mohamed
    Meshoul, Souham
    Dziwinski, Piotr
    Plawiak, Pawel
    Elgendy, Ibrahim A.
    SENSORS, 2022, 22 (23)
  • [7] A precise deep learning-based ECG arrhythmia classification scheme using deep bidirectional capsule network classifier
    Ghosh, Soumen
    Chander, Satish
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2025, 28 (02)
  • [8] Arrhythmia classification on ECG using Deep Learning
    Rajkumar, A.
    Ganesan, M.
    Lavanya, R.
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2019, : 365 - 369
  • [9] Fractal Feature Based ECG Arrhythmia Classification
    Raghav, Shantanu
    Mishra, Amit K.
    2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 741 - 745
  • [10] Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms
    Ma, Shuai
    Cui, Jianfeng
    Xiao, Weidong
    Liu, Lijuan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022