Ranking reprogramming factors for cell differentiation

被引:10
|
作者
Hammelman, Jennifer [1 ,2 ]
Patel, Tulsi [3 ,4 ,5 ,6 ,7 ]
Closser, Michael [3 ,4 ,5 ,6 ,7 ]
Wichterle, Hynek [3 ,4 ,5 ,6 ,7 ]
Gifford, David [1 ,2 ,8 ,9 ]
机构
[1] MIT, Computat & Syst Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Computer Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Columbia Univ, Irving Med Ctr, Dept Pathol & Cell Biol, New York, NY USA
[4] Columbia Univ, Irving Med Ctr, Dept Neurosci, New York, NY USA
[5] Columbia Univ, Irving Med Ctr, Dept Rehabil & Regenerat Med Neurol, New York, NY USA
[6] Columbia Univ, Irving Med Ctr, Ctr Motor Neuron Biol & Dis, New York, NY USA
[7] Columbia Univ, Columbia Stem Cell Initiat, Irving Med Ctr, New York, NY USA
[8] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[9] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
TRANSCRIPTION FACTORS; DIRECTED DIFFERENTIATION; STEM-CELLS; BINDING; GENOME; DNA; IDENTIFICATION; ENHANCERS; IDENTITY; MOUSE;
D O I
10.1038/s41592-022-01522-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A comparison of nine computational methods for identification of reprogramming factors for cell differentiation. Transcription factor over-expression is a proven method for reprogramming cells to a desired cell type for regenerative medicine and therapeutic discovery. However, a general method for the identification of reprogramming factors to create an arbitrary cell type is an open problem. Here we examine the success rate of methods and data for differentiation by testing the ability of nine computational methods (CellNet, GarNet, EBseq, AME, DREME, HOMER, KMAC, diffTF and DeepAccess) to discover and rank candidate factors for eight target cell types with known reprogramming solutions. We compare methods that use gene expression, biological networks and chromatin accessibility data, and comprehensively test parameter and preprocessing of input data to optimize performance. We find the best factor identification methods can identify an average of 50-60% of reprogramming factors within the top ten candidates, and methods that use chromatin accessibility perform the best. Among the chromatin accessibility methods, complex methods DeepAccess and diffTF have higher correlation with the ranked significance of transcription factor candidates within reprogramming protocols for differentiation. We provide evidence that AME and diffTF are optimal methods for transcription factor recovery that will allow for systematic prioritization of transcription factor candidates to aid in the design of new reprogramming protocols.
引用
收藏
页码:812 / +
页数:19
相关论文
共 50 条
  • [21] Glimpse Into Hox and Tale Regulation of Cell Differentiation and Reprogramming
    Cerda-Esteban, Nuria
    Spagnoli, Francesca M.
    [J]. DEVELOPMENTAL DYNAMICS, 2014, 243 (01) : 76 - 87
  • [22] Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience
    Mertens, Jerome
    Marchetto, Maria C.
    Bardy, Cedric
    Gage, Fred H.
    [J]. NATURE REVIEWS NEUROSCIENCE, 2016, 17 (07) : 424 - 437
  • [23] Synthetic transcription factors for cell fate reprogramming
    Black, Joshua B.
    Gersbach, Charles A.
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2018, 52 : 13 - 21
  • [24] Reprogramming cell fate with artificial transcription factors
    Heiderscheit, Evan A.
    Eguchi, Asuka
    Spurgat, Mackenzie C.
    Ansari, Aseem Z.
    [J]. FEBS LETTERS, 2018, 592 (06) : 888 - 900
  • [25] Cell reprogramming factors of neural crest cells
    Watanabe, K.
    Takase, Y.
    Takahashi, Y.
    [J]. DIFFERENTIATION, 2010, 80 : S33 - S33
  • [26] Single cell transcriptomics of pluripotent stem cells: reprogramming and differentiation
    Natarajan, Kedar Nath
    Teichmann, Sarah A.
    Kolodziejczyk, Aleksandra A.
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2017, 46 : 66 - 76
  • [27] Following Telomeres After Cell Reprogramming and Differentiation of iPS Cells
    Ayouaz, Ali
    Schertzer, M.
    Oudhrihi, N.
    Yates, F.
    Magniez, A.
    Feraud, O.
    Vallejo, Londono J. A.
    Bennaceur-Griscelli, A. L.
    [J]. HUMAN GENE THERAPY, 2010, 21 (06) : 775 - 775
  • [28] DNA methylation in cell differentiation and reprogramming: an emerging systematic view
    Huang, Kevin
    Fan, Guoping
    [J]. REGENERATIVE MEDICINE, 2010, 5 (04) : 531 - 544
  • [29] Epigenetic setting and reprogramming for neural cell fate determination and differentiation
    Imamura, Takuya
    Uesaka, Masahiro
    Nakashima, Kinichi
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2014, 369 (1652)
  • [30] Reprogramming erythroleuekmia cells to terminal differentiation and terminal cell division
    Matushansky, I
    Radparvar, F
    Rekhtman, N
    Skoultchi, A
    [J]. FRONTIERS IN BIOSCIENCE, 2000, 5 : D488 - D492