Ranking reprogramming factors for cell differentiation

被引:10
|
作者
Hammelman, Jennifer [1 ,2 ]
Patel, Tulsi [3 ,4 ,5 ,6 ,7 ]
Closser, Michael [3 ,4 ,5 ,6 ,7 ]
Wichterle, Hynek [3 ,4 ,5 ,6 ,7 ]
Gifford, David [1 ,2 ,8 ,9 ]
机构
[1] MIT, Computat & Syst Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Computer Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Columbia Univ, Irving Med Ctr, Dept Pathol & Cell Biol, New York, NY USA
[4] Columbia Univ, Irving Med Ctr, Dept Neurosci, New York, NY USA
[5] Columbia Univ, Irving Med Ctr, Dept Rehabil & Regenerat Med Neurol, New York, NY USA
[6] Columbia Univ, Irving Med Ctr, Ctr Motor Neuron Biol & Dis, New York, NY USA
[7] Columbia Univ, Columbia Stem Cell Initiat, Irving Med Ctr, New York, NY USA
[8] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[9] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
TRANSCRIPTION FACTORS; DIRECTED DIFFERENTIATION; STEM-CELLS; BINDING; GENOME; DNA; IDENTIFICATION; ENHANCERS; IDENTITY; MOUSE;
D O I
10.1038/s41592-022-01522-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A comparison of nine computational methods for identification of reprogramming factors for cell differentiation. Transcription factor over-expression is a proven method for reprogramming cells to a desired cell type for regenerative medicine and therapeutic discovery. However, a general method for the identification of reprogramming factors to create an arbitrary cell type is an open problem. Here we examine the success rate of methods and data for differentiation by testing the ability of nine computational methods (CellNet, GarNet, EBseq, AME, DREME, HOMER, KMAC, diffTF and DeepAccess) to discover and rank candidate factors for eight target cell types with known reprogramming solutions. We compare methods that use gene expression, biological networks and chromatin accessibility data, and comprehensively test parameter and preprocessing of input data to optimize performance. We find the best factor identification methods can identify an average of 50-60% of reprogramming factors within the top ten candidates, and methods that use chromatin accessibility perform the best. Among the chromatin accessibility methods, complex methods DeepAccess and diffTF have higher correlation with the ranked significance of transcription factor candidates within reprogramming protocols for differentiation. We provide evidence that AME and diffTF are optimal methods for transcription factor recovery that will allow for systematic prioritization of transcription factor candidates to aid in the design of new reprogramming protocols.
引用
收藏
页码:812 / +
页数:19
相关论文
共 50 条
  • [1] Ranking reprogramming factors for cell differentiation
    Jennifer Hammelman
    Tulsi Patel
    Michael Closser
    Hynek Wichterle
    David Gifford
    [J]. Nature Methods, 2022, 19 : 812 - 822
  • [2] Novel factors for cell differentiation and reprogramming
    Wu, Jiarui
    [J]. JOURNAL OF MOLECULAR CELL BIOLOGY, 2014, 6 (05) : 355 - 355
  • [3] Metabolic reprogramming in skeletal cell differentiation
    Joshua CBertels
    Guangxu He
    Fanxin Long
    [J]. Bone Research, 2024, 12 (03) : 539 - 554
  • [4] A biomaterial approach to cell reprogramming and differentiation
    Long, Joseph
    Kim, Hyejin
    Kim, Dajeong
    Lee, Jong Bum
    Kim, Deok-Ho
    [J]. JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (13) : 2375 - 2389
  • [5] Totipotency, cell differentiation and reprogramming in humans
    Hansis, Chris
    [J]. REPRODUCTIVE BIOMEDICINE ONLINE, 2006, 13 (04) : 551 - 557
  • [6] Signaling involved in stem cell reprogramming and differentiation
    Tanabe, Shihori
    [J]. WORLD JOURNAL OF STEM CELLS, 2015, 7 (07): : 992 - 998
  • [7] Microenvironmental and cell intrinsic factors governing human cDC2 differentiation and monocyte reprogramming
    Lang, Magdalena
    Krump, Corinna
    Meshcheryakova, Anastasia
    Tam-Amersdorfer, Carmen
    Schwarzenberger, Elke
    Passegger, Christina
    Connolly, Sally
    Mechtcheriakova, Diana
    Strobl, Herbert
    [J]. FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [8] Cancer Cell Reprogramming: Stem Cell Differentiation Stage Factors and An Agent Based Model to Optimize Cancer Treatment
    Biava, P. M.
    Basevi, M.
    Biggiero, L.
    Borgonovo, A.
    Borgonovo, E.
    Burigana, F.
    [J]. CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2011, 12 (02) : 231 - 242
  • [9] Pioneer transcription factors in cell reprogramming
    Iwafuchi-Doi, Makiko
    Zaret, Kenneth S.
    [J]. GENES & DEVELOPMENT, 2014, 28 (24) : 2679 - 2692
  • [10] MURINE SOMATIC CELL REPROGRAMMING TO PLURIPOTENCY AND DIFFERENTIATION INTO HEPATOCYTES
    de Alencastro, Gustavo
    Logan, Grant J.
    Smyth, Christine
    Studdert, Joshua B.
    Steiner, Kirsten A.
    Tam, Patrick P. L.
    Alexander, Ian E.
    [J]. JOURNAL OF GENE MEDICINE, 2011, 13 (7-8): : 432 - 433