Global attractors for the Klein-Gordon-Schrodinger equation in unbounded domains

被引:67
|
作者
Lu, KN [1 ]
Wang, BX
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
关键词
global attractor; absorbing set; continuity; asymptotic compactness; Klein-Gordon-Schrodinger equation;
D O I
10.1006/jdeq.2000.3827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper. we study thr long time behavior of solutions for the Klein-Gordon-Schrodinger equation in the whole space R-n with n less than or equal to 3. We first prove the continuity of the solutions on initial data and then establish the asymptotic compactness of solutions. Finally, we show the existence of the global attractor for this model in the space H-k(R-n) x H-k(R-n) for each integer k greater than or equal to 1. (C) 2001 Academic Press.
引用
下载
收藏
页码:281 / 316
页数:36
相关论文
共 50 条
  • [21] On Klein-Gordon-Schrodinger Control System
    Wang, Quan-Fang
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2253 - 2257
  • [22] A novel kind of efficient symplectic scheme for Klein-Gordon-Schrodinger equation
    Kong, Linghua
    Chen, Meng
    Yin, Xiuling
    APPLIED NUMERICAL MATHEMATICS, 2019, 135 : 481 - 496
  • [23] Uniform Decay for the Coupled Klein-Gordon-Schrodinger Equation with Linear Memory
    Park, Jong Yeoul
    Kim, Jung Ae
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (01) : 449 - 467
  • [24] Approximate solution for the Klein-Gordon-Schrodinger equation by the homotopy analysis method
    Wang Jia
    Li Biao
    Ye Wang-Chuan
    CHINESE PHYSICS B, 2010, 19 (03)
  • [25] A conservative compact difference scheme for the coupled Klein-Gordon-Schrodinger equation
    Sun, Qihang
    Zhang, Luming
    Wang, Shanshan
    Hu, Xiuling
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (05) : 1657 - 1674
  • [26] Global attractor for a system of Klein-Gordon-Schrodinger type in all R
    Poulou, Marilena N.
    Stavrakakis, Nikolaos M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) : 2548 - 2562
  • [27] Global existence and uniform decay for the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, MM
    Cavalcanti, VND
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (03): : 285 - 307
  • [28] Global solution in a weak energy class for Klein-Gordon-Schrodinger system
    Shi, Qihong
    Jia, Yaqian
    Wang, Xunyang
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (02): : 633 - 643
  • [29] Klein-Gordon-Schrodinger system: Dinucleon field
    Ran, Yanping
    Shi, Qihong
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [30] An application of the modified decomposition method for the solution of the coupled Klein-Gordon-Schrodinger equation
    Ray, Santanu Saha
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (07) : 1311 - 1317