Half-waves and spectral Riesz means on the 3-torus

被引:0
|
作者
Fairchild, Elliott [1 ]
Sussman, Ethan [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
LATTICE POINT PROBLEMS; FORMULA; VALUES;
D O I
10.1007/s13324-022-00737-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a full rank lattice Lambda subset of R-d and A is an element of R-d, consider Nd-,Nd- 0; Lambda,Nd-A(Sigma) = #([Lambda + A] n boolean AND Sigma B-d) = #{k is an element of Lambda : |k + A| = <= Sigma}. Consider the iterated integrals N-d,N- k+1; Lambda,A(Sigma) = integral(Sigma)(0)(Nd, k; Lambda,A)(sigma) d sigma, for k is an element of N. After an elementary derivation via the Poisson summation formula of the sharp large-Sigma asymptotics of N-3,N- k; Lambda,N-A(Sigma) for k >= 2 (these having an O(Sigma) error term), we discuss how they are encoded in the structure of the Fourier transform F-N3,F- k; Lambda,F-A(tau). The analysis is related to Hormander's analysis of spectral Riesz means, as the iterated integrals above are weighted spectral Riesz means for the simplest magnetic Schrodinger operator on the flat d-torus. That the N-3,N- k; Lambda,N-A(Sigma) obey an asymptotic expansion to O(Sigma(2)) is a special case of a general result holding for all magnetic Schrodinger operators on all manifolds, and the subleading polynomial corrections can be identified in terms of the Laurent series of the half-wave trace at t = 0. The improvement to O(Sigma) for k = 2 follows from a bound on the growth rate of the half-wave trace at late times.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Reidemeister torsion of link complements in a 3-torus
    Vuong, Bao
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2024, (87): : 11 - 21
  • [22] DYNAMIC DUST COSMOLOGIES WITH 3-TORUS TOPOLOGY
    ISENBERG, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (04): : 664 - 664
  • [23] Localization Riesz means of spectral expansions in a piecewise homogeneous half-space
    Bavrin, II
    Yaremko, OE
    DOKLADY MATHEMATICS, 2002, 66 (03) : 393 - 395
  • [24] THE C*-ALGEBRA OF AN AFFINE MAP ON THE 3-TORUS
    Andersen, Kasper K. S.
    Thomsen, Klaus
    DOCUMENTA MATHEMATICA, 2012, 17 : 545 - 572
  • [25] Uniqueness of least area surfaces in the 3-torus
    Franz Auer
    Mathematische Zeitschrift, 2001, 238 : 145 - 176
  • [26] Uniqueness of least area surfaces in the 3-torus
    Auer, F
    MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (01) : 145 - 176
  • [27] On some Closed Magnetic Curves on a 3-torus
    Marian Ioan Munteanu
    Ana Irina Nistor
    Mathematical Physics, Analysis and Geometry, 2017, 20
  • [28] Nine generators of the skein space of the 3-torus
    Carrega, Alessio
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (06): : 3449 - 3460
  • [29] Dirac operators over the flat 3-torus
    Meier, J. Fabian
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2012, 17 (01): : 78 - 86
  • [30] On the Kauffman Bracket Skein Module of the 3-torus
    Gilmer, Patrick M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (03) : 993 - 998