Uniqueness of least area surfaces in the 3-torus

被引:0
|
作者
Franz Auer
机构
[1] Mathematisches Institut der Universität Freiburg,
[2] Eckerstr. 1,undefined
[3] 79104 Freiburg i. Br.,undefined
[4] Germany (e-mail: auer@mathematik.uni-freiburg.de) ,undefined
来源
Mathematische Zeitschrift | 2001年 / 238卷
关键词
Mathematics Subject Classification (1991): 58E12, 49Q05, 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Given any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb Z}^3$\end{document}-periodic metric g on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb R}^3$\end{document} and a plane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P \subset{\mathbb R}^3$\end{document} through the origin, Bangert [4] shows that there exists a properly embedded surface homeomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb R}^2$\end{document} which is homotopically area-minimizing w.r.t. g, lies in a strip of bounded width around P, and does not have self-intersections when projected to the 3-torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $T^3 = {\mathbb R}^3 /{\mathbb Z}^3$\end{document}. For the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb F}_P$\end{document} of such surfaces, we show the following uniqueness theorems: If P is irrational, i.e., is not spanned by vectors in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb Z}^3$\end{document}, the action of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb Z}^3$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb F}_P$\end{document} by translations has a unique minimal set. If P is totally irrational, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P \cap{\mathbb Z}^3 = \{0\}$\end{document}, then the surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb F}_P$\end{document} are pairwise disjoint.
引用
收藏
页码:145 / 176
页数:31
相关论文
共 50 条
  • [1] Uniqueness of least area surfaces in the 3-torus
    Auer, F
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (01) : 145 - 176
  • [2] Embedded surfaces in the 3-torus
    Edmonds, Allan L.
    [J]. FUNDAMENTA MATHEMATICAE, 2008, 199 (03) : 195 - 212
  • [3] The maximally symmetric surfaces in the 3-torus
    Sheng Bai
    Vanessa Robins
    Chao Wang
    Shicheng Wang
    [J]. Geometriae Dedicata, 2017, 189 : 79 - 95
  • [4] The maximally symmetric surfaces in the 3-torus
    Bai, Sheng
    Robins, Vanessa
    Wang, Chao
    Wang, Shicheng
    [J]. GEOMETRIAE DEDICATA, 2017, 189 (01) : 79 - 95
  • [5] Surfaces in 3-torus: Geometry of plane sections
    Dynnikov, I
    [J]. EUROPEAN CONGRESS OF MATHEMATICS, VOL I, 1998, 168 : 162 - 177
  • [6] MINIMAL-SURFACES AND HEEGAARD-SPLITTINGS OF THE 3-TORUS
    FROHMAN, C
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1986, 124 (01) : 119 - 130
  • [7] LAGRANGIAN 3-TORUS FIBRATIONS
    Bernard, Ricardo Castano
    Matessi, Diego
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 81 (03) : 483 - 573
  • [8] Lattice triangulations of and of the 3-torus
    Brehm, Ulrich
    Kuehnel, Wolfgang
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 189 (01) : 97 - 133
  • [9] Enumerating admissible graphs on a 3-torus
    tWoord, AN
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (09): : 810 - 811
  • [10] Ergodicity and partial hyperbolicity on the 3-torus
    Hammerlindl, Andy
    Ures, Raul
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (04)