Ergodicity and partial hyperbolicity on the 3-torus

被引:15
|
作者
Hammerlindl, Andy [1 ,2 ]
Ures, Raul [3 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Sydney, Dept Math, Sydney, NSW 2006, Australia
[3] Fac Ingn, IMERL, Montevideo, Uruguay
关键词
Partial hyperbolicity; ergodicity; accessibility; DIFFEOMORPHISMS;
D O I
10.1142/S0219199713500387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If a non-ergodic, partially hyperbolic diffeomorphism, on the 3-torus is homotopic to an Anosov diffeomorphism A, it is topologically conjugate to A.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Partial hyperbolicity and ergodicity in dimension three
    Hertz, Federico Rodriguez
    Hertz, Maria Alejandra Rodriguez
    Ures, Raul
    JOURNAL OF MODERN DYNAMICS, 2008, 2 (02) : 187 - 208
  • [2] ERGODICITY AND PARTIAL HYPERBOLICITY ON SEIFERT MANIFOLDS
    Hammerlindl, Andy
    Hertz, Jana Rodriguez
    Ures, Raul
    JOURNAL OF MODERN DYNAMICS, 2020, 16 : 331 - 348
  • [3] Embedded surfaces in the 3-torus
    Edmonds, Allan L.
    FUNDAMENTA MATHEMATICAE, 2008, 199 (03) : 195 - 212
  • [4] Lattice triangulations of and of the 3-torus
    Brehm, Ulrich
    Kuehnel, Wolfgang
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 189 (01) : 97 - 133
  • [5] LAGRANGIAN 3-TORUS FIBRATIONS
    Bernard, Ricardo Castano
    Matessi, Diego
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 81 (03) : 483 - 573
  • [6] Partial hyperbolicity, Lyapunov exponents and stable ergodicity
    Burns, K
    Dolgopyat, D
    Pesin, Y
    JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) : 927 - 942
  • [7] Partial Hyperbolicity, Lyapunov Exponents and Stable Ergodicity
    K. Burns
    D. Dolgopyat
    Ya. Pesin
    Journal of Statistical Physics, 2002, 108 : 927 - 942
  • [8] The maximally symmetric surfaces in the 3-torus
    Sheng Bai
    Vanessa Robins
    Chao Wang
    Shicheng Wang
    Geometriae Dedicata, 2017, 189 : 79 - 95
  • [9] Enumerating admissible graphs on a 3-torus
    tWoord, AN
    AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (09): : 810 - 811
  • [10] FROM 3-TORUS TO FRACTAL AND THEN TO CHAOS
    ZOU, J
    HU, G
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1988, 10 (03) : 251 - 259