Preduals of Campanato spaces and Sobolev-Campanato spaces:: A general construction

被引:0
|
作者
Gröger, K [1 ]
Recke, L
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Weierstraft Inst Angew Anal & Stochast, D-10117 Berlin, Germany
关键词
projective and inductive systems of Banach spaces; imbedding theorems; equivalent norms;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe two limiting processes for families of Banach spaces closely related to the standard definition of projective and inductive limits. These processes lead again to Banach spaces. Information about linear operators and duality between basic families of spaces is carried over to the corresponding limit spaces. The abstract results are shown to be applicable to Campanato spaces and Sobolev-Campanato spaces. In particular, we obtain the existence and a characterization of predual spaces. Some imbedding relations are investigated in more detail.
引用
收藏
页码:45 / 72
页数:28
相关论文
共 50 条
  • [21] Variable exponent Campanato spaces
    Rafeiro H.
    Samko S.
    [J]. Journal of Mathematical Sciences, 2011, 172 (1) : 143 - 164
  • [22] A Note on Campanato Spaces and Their Applications
    Wang, D. H.
    Zhou, J.
    Teng, Z. D.
    [J]. MATHEMATICAL NOTES, 2018, 103 (3-4) : 483 - 489
  • [23] Hardy spaces with variable exponents and generalized Campanato spaces
    Nakai, Eiichi
    Sawano, Yoshihiro
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) : 3665 - 3748
  • [24] Reduction theorems for Sobolev embeddings into the spaces of Holder, Morrey and Campanato type
    Holik, Miloslav
    [J]. MATHEMATISCHE NACHRICHTEN, 2016, 289 (13) : 1626 - 1635
  • [25] Analytic Campanato Spaces by Functionals and Operators
    Wang, J.
    Xiao, J.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2996 - 3018
  • [26] The Campanato, Morrey and Holder spaces on spaces of homogeneous type
    Nakai, Eiichi
    [J]. STUDIA MATHEMATICA, 2006, 176 (01) : 1 - 19
  • [27] Local Morrey and Campanato Spaces on Quasimetric Measure Spaces
    Stempak, Krzysztof
    Tao, Xiangxing
    [J]. JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [28] Integral operators on BMO and Campanato spaces
    Ho, Kwok-Pun
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (06): : 1023 - 1035
  • [29] Nontriviality of John–Nirenberg–Campanato Spaces
    Zongze Zeng
    Der-Chen Chang
    Jin Tao
    Dachun Yang
    [J]. Complex Analysis and Operator Theory, 2023, 17
  • [30] Analytic Campanato Spaces by Functionals and Operators
    J. Wang
    J. Xiao
    [J]. The Journal of Geometric Analysis, 2016, 26 : 2996 - 3018