Analytic Campanato Spaces by Functionals and Operators

被引:0
|
作者
J. Wang
J. Xiao
机构
[1] Zhejiang Normal University,Mathematics, Physics and Information Engineering
[2] Memorial University,Department of Mathematics & Statistics
来源
关键词
Analytic Campanato spaces; Functionals; Operators; 30H10; 30H25; 30H30; 30H35; 47A20; 47A25;
D O I
暂无
中图分类号
学科分类号
摘要
This article is devoted to a deep study of the analytic Campanato space CAp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CA}_p$$\end{document} on the unit disk via not only exploring the first and second pre-duals of CAp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CA}_p$$\end{document} but also handling the boundedness of three operators: superposition Sϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {S}^\phi $$\end{document}; backward shift Sb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {S}_{\mathsf {b}}$$\end{document}; Schwarzian derivative S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {S}$$\end{document}, acting on CAp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CA}_p$$\end{document}.
引用
收藏
页码:2996 / 3018
页数:22
相关论文
共 50 条
  • [1] Analytic Campanato Spaces by Functionals and Operators
    Wang, J.
    Xiao, J.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2996 - 3018
  • [2] Composition Operators Between Analytic Campanato Spaces
    Jie Xiao
    Wen Xu
    [J]. The Journal of Geometric Analysis, 2014, 24 : 649 - 666
  • [3] Composition Operators Between Analytic Campanato Spaces
    Xiao, Jie
    Xu, Wen
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) : 649 - 666
  • [4] OPERATORS THAT COMMUTE WITH GENERALIZED INTEGRATION IN SPACES OF ANALYTIC FUNCTIONALS
    TKACHENKO, VA
    [J]. MATHEMATICAL NOTES, 1979, 25 (1-2) : 141 - 146
  • [5] Analytic Campanato Spaces and Their Compositions
    Xiao, Jie
    Yuan, Cheng
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (04) : 1001 - 1025
  • [6] Campanato–Morrey spaces for the double phase functionals
    Yoshihiro Mizuta
    Eiichi Nakai
    Takao Ohno
    Tetsu Shimomura
    [J]. Revista Matemática Complutense, 2020, 33 : 817 - 834
  • [7] Integral operators on BMO and Campanato spaces
    Ho, Kwok-Pun
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (06): : 1023 - 1035
  • [8] Campanato-Morrey spaces for the double phase functionals
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (03): : 817 - 834
  • [10] SPECTRAL THEORY IN SPACES OF ANALYTIC FUNCTIONALS FOR OPERATORS GENERATED BY MULTIPLICATION BY THE INDEPENDENT VARIABLE
    TKACENKO, VA
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1981, 40 (03): : 387 - 427