Global optimization of signomial geometric programming problems

被引:69
|
作者
Xu, Gongxian [1 ]
机构
[1] Bohai Univ, Dept Math, Jinzhou 121013, Peoples R China
基金
中国国家自然科学基金;
关键词
Geometric programming; Signomial geometric programming; Global optimization; Convexification; OPTIMAL DESIGN; ALGORITHM; SYSTEMS; POWER; MODEL;
D O I
10.1016/j.ejor.2013.10.016
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a global optimization approach for solving signomial geometric programming problems. In most cases nonconvex optimization problems with signomial parts are difficult, NP-hard problems to solve for global optimality. But some transformation and convexification strategies can be used to convert the original signomial geometric programming problem into a series of standard geometric programming problems that can be solved to reach a global solution. The tractability and effectiveness of the proposed successive convexification framework is demonstrated by seven numerical experiments. Some considerations are also presented to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed approach and the current methods in terms of both computational efficiency and solution quality. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:500 / 510
页数:11
相关论文
共 50 条
  • [31] Linearization method of global optimization for generalized geometric programming
    Shen, P
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (01) : 353 - 370
  • [32] A deterministic global optimization algorithm for generalized geometric programming
    Wang, YJ
    Liang, ZA
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (01) : 722 - 737
  • [33] Global optimization of bilevel programming problems via parametric programming
    Pistikopoulos, EN
    Dua, V
    Ryu, JH
    [J]. FRONTIERS IN GLOBAL OPTIMIZATION, 2003, 74 : 457 - 476
  • [34] Global optimization for a class of fractional programming problems
    Shu-Cherng Fang
    David Y. Gao
    Ruey-Lin Sheu
    Wenxun Xing
    [J]. Journal of Global Optimization, 2009, 45 : 337 - 353
  • [35] Global optimization of nonconvex factorable programming problems
    Hanif D. Sherali
    Hongjie Wang
    [J]. Mathematical Programming, 2001, 89 : 459 - 478
  • [36] Global optimization of nonconvex factorable programming problems
    Sherali, HD
    Wang, HJ
    [J]. MATHEMATICAL PROGRAMMING, 2001, 89 (03) : 459 - 478
  • [37] Global Optimization of Nonlinear Bilevel Programming Problems
    Zeynep H. Gümüş
    Christodoulos A. Floudas
    [J]. Journal of Global Optimization, 2001, 20 : 1 - 31
  • [38] Global optimization for a class of fractional programming problems
    Fang, Shu-Cherng
    Gao, David Y.
    Sheu, Ruey-Lin
    Xing, Wenxun
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2009, 45 (03) : 337 - 353
  • [39] Global optimization of nonlinear bilevel programming problems
    Gümüs, ZH
    Floudas, CA
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2001, 20 (01) : 1 - 31
  • [40] A global optimization using linear relaxation for generalized geometric programming
    Qu, Shaojian
    Zhang, Kecun
    Wang, Fusheng
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 190 (02) : 345 - 356