An adaptive weighting approach for ensemble-based detection of microaneurysms in color fundus images

被引:0
|
作者
Antal, Balint [1 ]
Lazar, Istvan [1 ]
Hajdu, Andras [1 ]
机构
[1] Univ Debrecen, Fac Informat, H-4010 Debrecen, Hungary
关键词
AUTOMATIC DETECTION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we present an adaptive weighting approach to microaneurysm detector ensembles. The basis of the adaptive weighting approach is the spatial location and contrast of the detected microaneurysm. During training, the performance of ensemble members is measured with a respect to these contextual information, which serves as a basis for the optimal weights assigned to detectors. We have tested this approach on two publicly available datasets, where it showed its competitiveness compared with out previously published ensemble-based approach for microaneurysm detection. Moreover, the proposed approach outperformed all the investigated individual detectors.
引用
收藏
页码:5955 / 5958
页数:4
相关论文
共 50 条
  • [1] Ensemble-based exudate detection in color fundus Images
    Nagy, Brigitta
    Antal, Balint
    Harangi, Balazs
    Hajdu, Andras
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2011), 2011, : 700 - 703
  • [2] Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
    Raudonis, Vidas
    Kairys, Arturas
    Verkauskiene, Rasa
    Sokolovska, Jelizaveta
    Petrovski, Goran
    Balciuniene, Vilma Jurate
    Volke, Vallo
    [J]. SENSORS, 2023, 23 (07)
  • [3] A Survey on Microaneurysms Detection in Color Fundus Images
    Siswadi, Anneke Annassia Putri
    Bricq, Stephanie
    Meriaudeau, Fabrice
    [J]. PROCEEDINGS OF ICORIS 2020: 2020 THE 2ND INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEM (ICORIS), 2020, : 344 - 348
  • [4] Automatic detection of microaneurysms in color fundus images
    Walter, Thomas
    Massin, Pascale
    Erginay, Ali
    Ordonez, Richard
    Jeulin, Clotilde
    Klein, Jean-Claude
    [J]. MEDICAL IMAGE ANALYSIS, 2007, 11 (06) : 555 - 566
  • [5] Fast Detection of Microaneurysms in Color Fundus Images
    Chen, Sean H. F.
    Hsiao, Han C. W.
    [J]. 2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 365 - 371
  • [6] Detection of microaneurysms in color fundus images based on local Fourier transform
    Zhang, Xugang
    Kuang, Yanfeng
    Yao, Junping
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 76
  • [7] Development of a Detection System Microaneurysms in Color Fundus Images
    Alvarez Cervera, M. M.
    Escalante Paredes, M. F.
    Nava Martinez, R.
    Castillo Ortiz, C.
    Ramirez Hernandez, N.
    [J]. 2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2016,
  • [8] Decision Trees for Microaneurysms Detection In Color Fundus Images
    Manjaramkar, Arati
    Kokare, Manesh
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN GREEN ENERGY AND HEALTHCARE TECHNOLOGIES (IGEHT), 2017,
  • [9] An efficient microaneurysms detection approach in retinal fundus images
    N. Jagan Mohan
    R. Murugan
    Tripti Goel
    M. Tanveer
    Parthapratim Roy
    [J]. International Journal of Machine Learning and Cybernetics, 2023, 14 : 1235 - 1252
  • [10] An efficient microaneurysms detection approach in retinal fundus images
    Mohan, N. Jagan
    Murugan, R.
    Goel, Tripti
    Tanveer, M.
    Roy, Parthapratim
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1235 - 1252