Fast Detection of Microaneurysms in Color Fundus Images

被引:0
|
作者
Chen, Sean H. F. [1 ]
Hsiao, Han C. W. [1 ]
机构
[1] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
关键词
microaneurysm detection; fundus image; AUTOMATIC DETECTION; DIABETIC-RETINOPATHY; PHOTOGRAPHS; RETINA; TRANSFORM;
D O I
10.1109/BigMM.2016.65
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic retinopathy is known to be one of the most frequent and serious eye diseases that typically cause blindness in adults between 20 and 60 years of age. Microaneurysm (MA) is one of the most important syndromes in color fundus images. A tool for automatic detection of MAs can significantly reduce the workload of the ophthalmologists. A multi-stage strategy to screen candidate MAs is used in this study. The computation time for screening one fundus image of size 1500x1152 is 16.8 seconds. Ten verified MAs are successfully detected. Another 5 putative spots need to be verified. The result demonstrates that the proposed approach is efficient yet effective.
引用
收藏
页码:365 / 371
页数:7
相关论文
共 50 条
  • [1] A Survey on Microaneurysms Detection in Color Fundus Images
    Siswadi, Anneke Annassia Putri
    Bricq, Stephanie
    Meriaudeau, Fabrice
    [J]. PROCEEDINGS OF ICORIS 2020: 2020 THE 2ND INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEM (ICORIS), 2020, : 344 - 348
  • [2] Automatic detection of microaneurysms in color fundus images
    Walter, Thomas
    Massin, Pascale
    Erginay, Ali
    Ordonez, Richard
    Jeulin, Clotilde
    Klein, Jean-Claude
    [J]. MEDICAL IMAGE ANALYSIS, 2007, 11 (06) : 555 - 566
  • [3] Development of a Detection System Microaneurysms in Color Fundus Images
    Alvarez Cervera, M. M.
    Escalante Paredes, M. F.
    Nava Martinez, R.
    Castillo Ortiz, C.
    Ramirez Hernandez, N.
    [J]. 2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2016,
  • [4] Decision Trees for Microaneurysms Detection In Color Fundus Images
    Manjaramkar, Arati
    Kokare, Manesh
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN GREEN ENERGY AND HEALTHCARE TECHNOLOGIES (IGEHT), 2017,
  • [5] Detection of microaneurysms in color fundus images based on local Fourier transform
    Zhang, Xugang
    Kuang, Yanfeng
    Yao, Junping
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 76
  • [6] Automatic Detection of Microaneurysms in Fundus Images
    Astorga, Jesus Eduardo Ochoa
    Wang, Linni
    Yamada, Shuhei
    Fujiwara, Yusuke
    Du, Weiwei
    Peng, Yahui
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2023, 11 (01) : 26 - 26
  • [7] Detection of Microaneurysms and Exudates from Color Fundus Images by using SBGFRLS Algorithm
    Kumar, Manoj
    Manikandan
    Na, Malaya Kumar
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATICS AND ANALYTICS (ICIA' 16), 2016,
  • [8] Automatic detection of microaneurysms in retinal fundus images
    Wu, Bo
    Zhu, Weifang
    Shi, Fei
    Zhu, Shuxia
    Chen, Xinjian
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2017, 55 : 106 - 112
  • [9] An adaptive weighting approach for ensemble-based detection of microaneurysms in color fundus images
    Antal, Balint
    Lazar, Istvan
    Hajdu, Andras
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 5955 - 5958
  • [10] An efficient microaneurysms detection approach in retinal fundus images
    N. Jagan Mohan
    R. Murugan
    Tripti Goel
    M. Tanveer
    Parthapratim Roy
    [J]. International Journal of Machine Learning and Cybernetics, 2023, 14 : 1235 - 1252