Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method

被引:3
|
作者
Raudonis, Vidas [1 ]
Kairys, Arturas [1 ]
Verkauskiene, Rasa [2 ]
Sokolovska, Jelizaveta [3 ]
Petrovski, Goran [4 ,5 ,6 ,7 ]
Balciuniene, Vilma Jurate [8 ]
Volke, Vallo [9 ]
机构
[1] Kaunas Univ Technol, Automat Dept, LT-51368 Kaunas, Lithuania
[2] Lithuanian Univ Hlth Sci, Inst Endocrinol, LT-50140 Kaunas, Lithuania
[3] Univ Latvia, Fac Med, LV-1004 Riga, Latvia
[4] Oslo Univ Hosp, Ctr Eye Res & Innovat Diagnost, Dept Ophthalmol, N-0372 Oslo, Norway
[5] Univ Oslo, Inst Clin Med, Fac Med, N-0372 Oslo, Norway
[6] Univ Split, Dept Ophthalmol, Sch Med, Split 21000, Croatia
[7] Univ Hosp Ctr, Split 21000, Croatia
[8] Lithuanian Univ Hlth Sci, LT-44307 Kaunas, Lithuania
[9] Tartu Univ, Fac Med, EE-50411 Tartu, Estonia
关键词
diabetic retinopathy (DR); image segmentation; microaneurysms (MAs); encoder-decoder deep neural network;
D O I
10.3390/s23073431
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from output patches. The proposed segmentation method is based on an ensemble of three individual deep networks, such as U-Net, ResNet34-UNet and UNet++. The performance evaluation is based on the calculation of the Dice score and IoU values. The ensemble-based model achieved higher Dice score (0.95) and IoU (0.91) values compared to other network architectures. The proposed ensemble-based model demonstrates the high practical application potential for detection of early-stage diabetic retinopathy in color fundus images.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An adaptive weighting approach for ensemble-based detection of microaneurysms in color fundus images
    Antal, Balint
    Lazar, Istvan
    Hajdu, Andras
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 5955 - 5958
  • [2] Automatic Detection of Microaneurysms in Fundus Images
    Astorga, Jesus Eduardo Ochoa
    Wang, Linni
    Yamada, Shuhei
    Fujiwara, Yusuke
    Du, Weiwei
    Peng, Yahui
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2023, 11 (01) : 26 - 26
  • [3] Automated Microaneurysms Detection in Fundus Images Using Image Segmentation
    Sreng, Syna
    Maneerat, Noppadol
    Hamamoto, Kazuhiko
    2017 INTERNATIONAL CONFERENCE ON DIGITAL ARTS, MEDIA AND TECHNOLOGY (ICDAMT): DIGITAL ECONOMY FOR SUSTAINABLE GROWTH, 2017, : 19 - 23
  • [4] Automatic detection of microaneurysms in color fundus images
    Walter, Thomas
    Massin, Pascale
    Erginay, Ali
    Ordonez, Richard
    Jeulin, Clotilde
    Klein, Jean-Claude
    MEDICAL IMAGE ANALYSIS, 2007, 11 (06) : 555 - 566
  • [5] Ensemble-based exudate detection in color fundus Images
    Nagy, Brigitta
    Antal, Balint
    Harangi, Balazs
    Hajdu, Andras
    PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2011), 2011, : 700 - 703
  • [6] Automatic detection of microaneurysms in retinal fundus images
    Wu, Bo
    Zhu, Weifang
    Shi, Fei
    Zhu, Shuxia
    Chen, Xinjian
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2017, 55 : 106 - 112
  • [7] Automatic Detection of Microaneurysms and Hemorrhages in Digital Fundus Images
    Giri Babu Kande
    T. Satya Savithri
    P. Venkata Subbaiah
    Journal of Digital Imaging, 2010, 23 : 430 - 437
  • [8] Automatic Detection of Microaneurysms and Hemorrhages in Digital Fundus Images
    Kande, Giri Babu
    Savithri, T. Satya
    Subbaiah, P. Venkata
    JOURNAL OF DIGITAL IMAGING, 2010, 23 (04) : 430 - 437
  • [9] AUTOMATIC DETECTION OF MICROANEURYSMS AND HAEMORRHAGES IN FUNDUS IMAGES USING DYNAMIC SHAPE FEATURES
    Seoud, Lama
    Faucon, Timothee
    Hurtut, Thomas
    Chelbi, Jihed
    Cheriet, Farida
    Langlois, J. M. Pierre
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 101 - 104
  • [10] Automatic detection of microaneurysms in fundus images based on multiple preprocessing fusion to extract features
    Zhang, Xugang
    Ma, Ying
    Gong, Qingshan
    Yao, Junping
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85