Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method

被引:3
|
作者
Raudonis, Vidas [1 ]
Kairys, Arturas [1 ]
Verkauskiene, Rasa [2 ]
Sokolovska, Jelizaveta [3 ]
Petrovski, Goran [4 ,5 ,6 ,7 ]
Balciuniene, Vilma Jurate [8 ]
Volke, Vallo [9 ]
机构
[1] Kaunas Univ Technol, Automat Dept, LT-51368 Kaunas, Lithuania
[2] Lithuanian Univ Hlth Sci, Inst Endocrinol, LT-50140 Kaunas, Lithuania
[3] Univ Latvia, Fac Med, LV-1004 Riga, Latvia
[4] Oslo Univ Hosp, Ctr Eye Res & Innovat Diagnost, Dept Ophthalmol, N-0372 Oslo, Norway
[5] Univ Oslo, Inst Clin Med, Fac Med, N-0372 Oslo, Norway
[6] Univ Split, Dept Ophthalmol, Sch Med, Split 21000, Croatia
[7] Univ Hosp Ctr, Split 21000, Croatia
[8] Lithuanian Univ Hlth Sci, LT-44307 Kaunas, Lithuania
[9] Tartu Univ, Fac Med, EE-50411 Tartu, Estonia
关键词
diabetic retinopathy (DR); image segmentation; microaneurysms (MAs); encoder-decoder deep neural network;
D O I
10.3390/s23073431
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, a novel method for automatic microaneurysm detection in color fundus images is presented. The proposed method is based on three main steps: (1) image breakdown to smaller image patches, (2) inference to segmentation models, and (3) reconstruction of the predicted segmentation map from output patches. The proposed segmentation method is based on an ensemble of three individual deep networks, such as U-Net, ResNet34-UNet and UNet++. The performance evaluation is based on the calculation of the Dice score and IoU values. The ensemble-based model achieved higher Dice score (0.95) and IoU (0.91) values compared to other network architectures. The proposed ensemble-based model demonstrates the high practical application potential for detection of early-stage diabetic retinopathy in color fundus images.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Microaneurysms detection in fundus images using local Fourier transform and neighbourhood analysis
    Perumal, T. Sudarson Rama
    Jayachandran, A.
    Kumar, S. Ratheesh
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (02) : 1403 - 1423
  • [32] Secondary Observer System for Detection of Microaneurysms in Fundus Images Using Texture Descriptors
    Derwin, D. Jeba
    Selvi, S. Tami
    Singh, O. Jeba
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (01) : 159 - 167
  • [33] Microaneurysms detection in fundus images using local Fourier transform and neighbourhood analysis
    T. Sudarson Rama Perumal
    A. Jayachandran
    S. Ratheesh Kumar
    Knowledge and Information Systems, 2024, 66 : 1403 - 1423
  • [34] Secondary Observer System for Detection of Microaneurysms in Fundus Images Using Texture Descriptors
    D. Jeba Derwin
    S. Tami Selvi
    O. Jeba Singh
    Journal of Digital Imaging, 2020, 33 : 159 - 167
  • [35] Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms
    Khojasteh, Parham
    Aliahmad, Behzad
    Kumar, Dinesh K.
    BMC OPHTHALMOLOGY, 2018, 18
  • [36] Automatic Hemorrhages Detection Based on Fundus Images
    Sreng, Syna
    Maneerat, Noppadol
    Isarakorn, Don
    Hamamoto, Kazuhiko
    Panjaphongse, Ronakorn
    2015 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2015, : 253 - 257
  • [37] A Deep Learning-based Automatic Method for Early Detection of the Glaucoma using Fundus Images
    Shoukat, Ayesha
    Akbar, Shahzad
    Safdar, Khadij A.
    4TH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING (IC)2, 2021, : 391 - 396
  • [38] Automatic Method for Optic Disc Segmentation Using Deep Learning on Retinal Fundus Images
    Septiarini, Anindita
    Hamdani, Hamdani
    Setyaningsih, Emy
    Junirianto, Eko
    Utaminingrum, Fitri
    HEALTHCARE INFORMATICS RESEARCH, 2023, 29 (02) : 145 - 151
  • [39] Edge directed inference for microaneurysms detection in digital fundus images
    Huang, Ke
    Yan, Michelle
    Aviyente, Selin
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [40] Deep Learning-Based Approach for Accurate Segmentation of Microaneurysms in Fundus Fluorescein Angiography Images
    Ma, Rui
    Di Nicola, Maura
    Hao, Lili
    Dorizas, Christopher
    Ayoubi, Mohammad
    Khodeiry, Mohamed
    Mendoza, Ximena
    Shyu, Mei-Ling
    Lee, Richard K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)