Posterior asymptotics in the supremum L1 norm for conditional density estimation

被引:0
|
作者
De Blasi, Pierpaolo [1 ]
Walker, Stephen G.
机构
[1] Univ Turin, Turin, Italy
来源
ELECTRONIC JOURNAL OF STATISTICS | 2016年 / 10卷 / 02期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Nonparametric Bayesian inference; posterior asymptotics; conditional density estimation; regression tree model; DIRICHLET MIXTURES; BAYESIAN CONSISTENCY; CONVERGENCE-RATES; REGRESSION; DISTRIBUTIONS; CONTRACTION; MODELS;
D O I
10.1214/16-EJS1191
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study posterior asymptotics for conditional density estimation in the supremum L-1 norm. Compared to the expected L-1 norm, the supremum L-1 norm allows accurate prediction at any designated conditional density. We model the conditional density as a regression tree by defining a data dependent sequence of increasingly finer partitions of the predictor space and by specifying the conditional density to be the same across all predictor values in a partition set. Each conditional density is modeled independently so that the prior specifies a type of dependence between conditional densities which disappears after a certain number of observations have been observed. The rate at which the number of partition sets increases with the sample size determines when the dependence between pairs of conditional densities is set to zero and, ultimately, drives posterior convergence at the true data distribution.
引用
收藏
页码:3219 / 3246
页数:28
相关论文
共 50 条
  • [1] Current density reconstructions using the L1 norm
    Wagner, M
    Wischmann, HA
    Fuchs, M
    Köhler, T
    Drenckhahn, R
    BIOMAG 96: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON BIOMAGNETISM, VOLS I & II, 2000, : 393 - 396
  • [2] Msplit Estimation Based on L1 Norm Condition
    Wyszkowska, Patrycja
    Duchnowski, Robert
    JOURNAL OF SURVEYING ENGINEERING, 2019, 145 (03)
  • [3] LINEAR PREDICTIVE SPECTRAL ESTIMATION VIA THE L1 NORM
    SCHROEDER, J
    YARLAGADDA, R
    SIGNAL PROCESSING, 1989, 17 (01) : 19 - 29
  • [4] Recursive Algorithm for L1 Norm Estimation in Linear Models
    Khodabandeh, A.
    Amiri-Simkooei, A. R.
    JOURNAL OF SURVEYING ENGINEERING, 2011, 137 (01) : 1 - 8
  • [5] Seismic wavelet phase estimation by l1 norm minimization
    Gelpi, Gabriel R.
    Perez, Daniel O.
    Velis, Danilo R.
    2017 XVII WORKSHOP ON INFORMATION PROCESSING AND CONTROL (RPIC), 2017,
  • [6] Sparse density estimation with l1 penalties
    Bunea, Florentina
    Tsybakov, Alexandre B.
    Wegkamp, Marten H.
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 530 - +
  • [7] DECONVOLUTION WITH L1 NORM
    TAYLOR, HL
    BANKS, SC
    MCCOY, JF
    GEOPHYSICS, 1979, 44 (01) : 39 - 52
  • [8] DECONVOLUTION WITH L1 NORM
    TAYLOR, HL
    BANKS, SC
    MCCOY, JF
    GEOPHYSICS, 1977, 42 (07) : 1544 - 1544
  • [9] DOA estimation using weighted L1 norm sparse model
    College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin
    150040, China
    Harbin Gongcheng Daxue Xuebao, 1600, 4 (603-607):
  • [10] A Target Source Direction Estimation Algorithm Based on L1 Norm
    Li Z.-L.
    Li K.
    Yue X.-G.
    Qi F.
    Chen X.-Y.
    2017, Beijing University of Posts and Telecommunications (40): : 103 - 107