Posterior asymptotics in the supremum L1 norm for conditional density estimation

被引:0
|
作者
De Blasi, Pierpaolo [1 ]
Walker, Stephen G.
机构
[1] Univ Turin, Turin, Italy
来源
ELECTRONIC JOURNAL OF STATISTICS | 2016年 / 10卷 / 02期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Nonparametric Bayesian inference; posterior asymptotics; conditional density estimation; regression tree model; DIRICHLET MIXTURES; BAYESIAN CONSISTENCY; CONVERGENCE-RATES; REGRESSION; DISTRIBUTIONS; CONTRACTION; MODELS;
D O I
10.1214/16-EJS1191
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study posterior asymptotics for conditional density estimation in the supremum L-1 norm. Compared to the expected L-1 norm, the supremum L-1 norm allows accurate prediction at any designated conditional density. We model the conditional density as a regression tree by defining a data dependent sequence of increasingly finer partitions of the predictor space and by specifying the conditional density to be the same across all predictor values in a partition set. Each conditional density is modeled independently so that the prior specifies a type of dependence between conditional densities which disappears after a certain number of observations have been observed. The rate at which the number of partition sets increases with the sample size determines when the dependence between pairs of conditional densities is set to zero and, ultimately, drives posterior convergence at the true data distribution.
引用
收藏
页码:3219 / 3246
页数:28
相关论文
共 50 条
  • [42] ASYMPTOTIC NORMALITY OF THE LOCAL LINEAR ESTIMATION OF THE L1 CONDITIONAL CUMULATIVE DISTRIBUTION FUNCTION
    Abdelkader, Bouadjemi
    Ettayib, Ghalmi
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (12): : 3525 - 3535
  • [43] POSTERIOR CONSISTENCY IN CONDITIONAL DENSITY ESTIMATION BY COVARIATE DEPENDENT MIXTURES
    Norets, Andriy
    Pelenis, Justinas
    ECONOMETRIC THEORY, 2014, 30 (03) : 606 - 646
  • [44] Fast algorithms for l1 norm/mixed l1 and l2 norms for image restoration
    Fu, HY
    Ng, MK
    Nikolova, M
    Barlow, J
    Ching, WK
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 843 - 851
  • [45] Direction-of-Arrival Estimation Using an Array Covariance Vector and a Reweighted l1 Norm
    Luo, Xiao Yu
    Fei, Xiao Chao
    Gan, Lu
    Wei, Ping
    Liao, Hong Shu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (09): : 1964 - 1967
  • [46] Direction of Arrival Estimation for Complex Sources Through L1 Norm Sparse Bayesian Learning
    Bai, Hua
    Duarte, Marco F.
    Janaswamy, Ramakrishna
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 765 - 769
  • [47] Robust censored regression with l1 -norm regularization
    Beyhum, Jad
    Van Keilegom, Ingrid
    TEST, 2023, 32 (01) : 146 - 162
  • [48] An L1 norm for efficient power quality monitoring
    Ginart, Antonio
    Barlas, Irtaza
    Nanduri, Sashank
    Kalgren, Patrick
    Roemer, Michael J.
    ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (11) : 1495 - 1502
  • [49] Minimum L1 Norm SAR Image Formation
    Coleman, Christopher M.
    Connell, Scott D.
    Gabl, Edward F.
    Walter, James A.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 544 - 547
  • [50] LOWER BOUND FOR L1 NORM OF EXPONENTIAL SUMS
    PICHORIDES, SK
    MATHEMATIKA, 1974, 21 (42) : 155 - 159