DOA estimation using weighted L1 norm sparse model

被引:0
|
作者
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin [1 ]
150040, China
机构
来源
Harbin Gongcheng Daxue Xuebao | 1600年 / 4卷 / 603-607期
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Signal to noise ratio - Global positioning system - Computational complexity - Frequency estimation - Direction of arrival
引用
收藏
相关论文
共 50 条
  • [1] Adaptive Convolutional Sparse Coding with Weighted l1 Norm
    Qiu, Jiale
    Yang, Min
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7746 - 7750
  • [2] DOA Estimation Based on Weighted l1-norm Sparse Representation for Low SNR Scenarios
    Zuo, Ming
    Xie, Shuguo
    Zhang, Xian
    Yang, Meiling
    [J]. SENSORS, 2021, 21 (13)
  • [3] DOA Estimation Based on Sparse Signal Recovery Utilizing Weighted l1-Norm Penalty
    Xu, Xu
    Wei, Xiaohan
    Ye, Zhongfu
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (03) : 155 - 158
  • [4] AN APPROACH OF DOA ESTIMATION USING NOISE SUBSPACE WEIGHTED l1 MINIMIZATION
    Zheng, Chundi
    Li, Gang
    Zhang, Hao
    Wang, Xiqin
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2856 - 2859
  • [5] Sparse Array Synthesis Based on Iterative Weighted L1 Norm
    Tu, Guangpeng
    Chen, Ence
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PROBLEM-SOLVING (ICCP), 2013, : 238 - 240
  • [6] LOCALLY SPARSE RECONSTRUCTION USING THE l1,∞-NORM
    Heins, Pia
    Moeller, Michael
    Burger, Martin
    [J]. INVERSE PROBLEMS AND IMAGING, 2015, 9 (04) : 1093 - 1137
  • [7] Robust Maximum Likelihood Estimation by Sparse Bundle Adjustment using the L1 Norm
    Dai, Zhijun
    Zhang, Fengjun
    Wang, Hongan
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1672 - 1679
  • [8] High-dynamic DOA estimation based on weighted L1 minimization
    Wang, Wenyi
    Wu, Renbiao
    [J]. Progress In Electromagnetics Research C, 2013, 42 : 253 - 265
  • [9] Parameter choices for sparse regularization with the l1 norm
    Liu, Qianru
    Wang, Rui
    Xu, Yuesheng
    Yan, Mingsong
    [J]. INVERSE PROBLEMS, 2023, 39 (02)
  • [10] Characteristic analysis for the l1 norm of sparse coefficients in sparse representation
    Zong, Jingjing
    Qiu, Tianshuang
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2019, 41 (12): : 2692 - 2696