Topological aspects of solitons in ferromagnets

被引:0
|
作者
Ren Ji-Rong [1 ]
Wang Ji-Biao [1 ]
Li Ran [1 ]
Xu Dong-Hui [1 ]
Duan Yi-Shi [1 ]
机构
[1] Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
ferromagnets; skyrmions; vortex rings;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two kinds of topological soliton (skymion and magnetic vortex ring) in ferromagnets are studied. They have the common topological origin, a tensor H alpha beta= (n) over right arrow center dot (partial derivative(alpha)(n) over right arrow x partial derivative(beta)(n) over right arrow), which describes the non-trivial distribution of local orientation of magnetization (n) over right arrow at large distances in space. The topological stability of skyrmion is protected by the winding number. Knot-like topological defect as magnetic vortex rings is also studied. On the assumption that magnetic vortex rings are geometric lines, we present their delta-function distribution in ferromagnetic materials. Furthermore, it is briefly shown that Hopf invariant is a proper topological invariant to describe the topology of magnetic vortex rings.
引用
收藏
页码:777 / 780
页数:4
相关论文
共 50 条
  • [41] Topological solitons in optical oscillators
    Yaparov, V. V.
    Taranenko, V. B.
    JOURNAL OF OPTICS, 2016, 18 (07)
  • [42] Relations among topological solitons
    Nitta, Muneto
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [43] Topological solitons in helical strings
    Nisoli, Cristiano
    Balatsky, Alexander V.
    PHYSICAL REVIEW E, 2015, 91 (06)
  • [44] Particles as stable topological solitons
    Faber, Manfried
    EMERQUM 11: EMERGENT QUANTUM MECHANICS 2011 (HEINZ VON FOERSTER CONGRESS), 2012, 361
  • [45] TOPOLOGICAL SOLITONS AND GEOMETRICAL FRUSTRATION
    VILLAINGUILLOT, S
    DANDOLOFF, R
    SAXENA, A
    BISHOP, AR
    PHYSICAL REVIEW B, 1995, 52 (09): : 6712 - 6722
  • [46] Quantum nucleation of topological solitons
    Eto, Minoru
    Nitta, Muneto
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [47] Simulated annealing for topological solitons
    Hale, M
    Schwindt, O
    Weidig, T
    PHYSICAL REVIEW E, 2000, 62 (03) : 4333 - 4346
  • [48] ON SOME TOPOLOGICAL SOLITONS IN FERRONEMATICS
    KUMAR, PBS
    RANGANATH, GS
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1991, 196 : 27 - 37
  • [49] Topological solitons in nonlinear electrodynamics
    Kalbermann, G
    PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT: PROCEEDINGS OF A SYMPOSIUM IN HONOUR OF JEAN-PIERRE VIGIER, 1997, 80 : 45 - 55
  • [50] Noncommuting Momenta of Topological Solitons
    Watanabe, Haruki
    Murayama, Hitoshi
    PHYSICAL REVIEW LETTERS, 2014, 112 (19)