Topological aspects of solitons in ferromagnets

被引:0
|
作者
Ren Ji-Rong [1 ]
Wang Ji-Biao [1 ]
Li Ran [1 ]
Xu Dong-Hui [1 ]
Duan Yi-Shi [1 ]
机构
[1] Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
ferromagnets; skyrmions; vortex rings;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two kinds of topological soliton (skymion and magnetic vortex ring) in ferromagnets are studied. They have the common topological origin, a tensor H alpha beta= (n) over right arrow center dot (partial derivative(alpha)(n) over right arrow x partial derivative(beta)(n) over right arrow), which describes the non-trivial distribution of local orientation of magnetization (n) over right arrow at large distances in space. The topological stability of skyrmion is protected by the winding number. Knot-like topological defect as magnetic vortex rings is also studied. On the assumption that magnetic vortex rings are geometric lines, we present their delta-function distribution in ferromagnetic materials. Furthermore, it is briefly shown that Hopf invariant is a proper topological invariant to describe the topology of magnetic vortex rings.
引用
收藏
页码:777 / 780
页数:4
相关论文
共 50 条
  • [21] SOLITONS IN PLANAR FERROMAGNETS WITH BIQUADRATIC EXCHANGE
    FERRER, R
    HAMED, A
    LUND, F
    PHYSICAL REVIEW B, 1986, 33 (03): : 1752 - 1754
  • [22] Dissipative dynamics of solitons in planar ferromagnets
    Dziarmaga, J
    PHYSICAL REVIEW LETTERS, 1997, 79 (11) : 2129 - 2132
  • [23] 3-DIMENSIONAL SOLITONS IN FERROMAGNETS
    IQBAL, MZ
    MURTAZA, G
    NAYYAR, AH
    PHYSICAL REVIEW B, 1979, 19 (11): : 5921 - 5924
  • [24] Solitons in one-dimensional ferromagnets
    Soviet Scientific Reviews, Section A: Physics Reviews, 1992, 16 (pt 3):
  • [25] SUPPLEMENT TO THE PAPER BY STEFANOVICH,V.A. EFFECTIVE EQUATIONS OF DYNAMICS OF TWO-DIMENSIONAL TOPOLOGICAL SOLITONS IN FERROMAGNETS
    IVANOV, BA
    STEFANOVICH, VA
    UKRAINSKII FIZICHESKII ZHURNAL, 1989, 34 (04): : 634 - 635
  • [26] TOPOLOGICAL SOLITONS IN PHYSICS
    PARSA, Z
    AMERICAN JOURNAL OF PHYSICS, 1979, 47 (01) : 56 - 62
  • [27] Incompressible topological solitons
    Adam, C.
    Naya, C.
    Oles, K.
    Romanczukiewicz, T.
    Sanchez-Guillen, J.
    Wereszczynski, A.
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [28] Topological dragging of solitons
    Kartashov, YV
    Vysloukh, VA
    Torner, L
    PHYSICAL REVIEW LETTERS, 2005, 95 (24)
  • [29] Topological edge solitons
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2022, 65 (04) : 417 - 418
  • [30] NUCLEI AS TOPOLOGICAL SOLITONS
    NYMAN, EM
    RISKA, DO
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1988, 3 (07): : 1535 - 1580