Existence for a class of non-newtonian fluids with a nonlocal friction boundary condition

被引:5
|
作者
Consiglieri, L [1 ]
机构
[1] Univ Lisbon, Fac Sci, Dept Math, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Sci, CMAF, P-1749016 Lisbon, Portugal
关键词
non-Newtonian fluids; Coulomb and nonlocal friction;
D O I
10.1007/s10114-005-0621-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a variational inequality describing the motion of incompressible fluids, whose viscous stress tensors belong to the subdifferential of a functional at the point given by the symmetric part of the velocity gradient, with a nonlocal friction condition on a part of the boundary obtained by a generalized mollification of the stresses. We establish an existence result of a solution to the nonlocal friction problem for this class of non-Newtonian flows. The result is based on the Faedo-Galerkin and Moreau-Yosida methods, the duality theory of convex analysis and the Tychonov-Kakutani-Glicksberg fixed point theorem for multi-valued mappings in an appropriate functional space framework.
引用
收藏
页码:523 / 534
页数:12
相关论文
共 50 条