A new generalization of the (2+1)-dimensional Davey-Stewartson equation

被引:2
|
作者
Lin, J
Tang, XY
Lou, SY [1 ]
Wang, KL
机构
[1] Shanghai Jiao Tong Univ, Phys Dept, Shanghai 200030, Peoples R China
[2] Univ Sci & Technol China, Ctr Nonlinear Sci, Anhua 230026, Peoples R China
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
integrable models; Davey-Stewartson I equation; Fourier asymptotical expansion;
D O I
10.1515/zna-2001-0902
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using an asymptotically exact reduction method based on Fourier expansion and spatiotemporal re-scaling, a new integrable system of the nonlinear partial differential equation in (2+1)-dimensions, extended Davey-Stewartson I equation, is deduced from a known (2+1)-dimensional integrable equation. The integrability of the new equation system is explicitly proved by the spectral transformation. Actually, the corresponding Lax pair of the new equations can be obtained by applying the same reduction method to the Lax pair of the original equation.
引用
收藏
页码:613 / 618
页数:6
相关论文
共 50 条