Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling

被引:82
|
作者
Saha, S [1 ]
Kay, SM [1 ]
机构
[1] Univ Rhode Isl, Dept Elect & Comp Engn, Kingston, RI 02881 USA
关键词
Superimposed chirps;
D O I
10.1109/78.978378
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the problem of parameter estimation of superimposed chirp signals in noise. The approach used here is a computationally modest implementation of a maximum likelihood (ML) technique. The ML technique for estimating the complex amplitudes, chirping rates, and frequencies reduces to a separable optimization problem where the chirping rates and frequencies are determined by maximizing a compressed likelihood function that is a function of only the chirping rates and frequencies. Since the compressed likelihood function is multidimensional, its maximization via a grid search is impractical. We propose a noniterative maximization of the compressed likelihood function using importance sampling. Simulation results are presented for a scenario involving closely spaced parameters for the individual signals.
引用
收藏
页码:224 / 230
页数:7
相关论文
共 50 条
  • [31] Efficient importance sampling maximum likelihood estimation of stochastic differential equations
    Pastorello, S.
    Rossi, E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (11) : 2753 - 2762
  • [32] Parameter estimation using polynomial chaos and maximum likelihood
    Chen-Charpentier, Benito
    Stanescu, Dan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 336 - 346
  • [33] Smoothing Monte Carlo exchange factors through constrained maximum likelihood estimation
    Daun, KJ
    Morton, DP
    Howell, JR
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (10): : 1124 - 1128
  • [34] MONTE-CARLO EVIDENCE ON ADAPTIVE MAXIMUM-LIKELIHOOD-ESTIMATION OF A REGRESSION
    HSIEH, DA
    MANSKI, CF
    ANNALS OF STATISTICS, 1987, 15 (02): : 541 - 551
  • [35] Efficient Monte Carlo algorithm for restricted maximum likelihood estimation of genetic parameters
    Matilainen, Kaarina
    Mantysaari, Esa A.
    Stranden, Ismo
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2019, 136 (04) : 252 - 261
  • [36] Joint Maximum-Likelihood CFO and Channel Estimation for OFDMA Uplink Using Importance Sampling
    Chen, Jianwu
    Wu, Yik-Chung
    Chan, S. C.
    Ng, Tung-Sang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2008, 57 (06) : 3462 - 3470
  • [37] ASYMPTOTICS OF MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATORS
    Miasojedow, Blazej
    Niemiro, Wojciech
    Palczewski, Jan
    Rejchel, Wojciech
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (02): : 295 - 310
  • [38] A Maximum Likelihood Time Delay Estimator Using Importance Sampling
    Masmoudi, Ahmed
    Bellili, Faouzi
    Affes, Sofiene
    Stephenne, Alex
    2011 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM 2011), 2011,
  • [39] SIMULATED LIKELIHOOD ESTIMATION USING ITERATIVE IMPORTANCE SAMPLING
    Mak, Tak K.
    Nebebe, Fassil
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 60 (01) : 45 - 62
  • [40] Importance Sampling Monte Carlo simulations for accurate estimation of SRAM yield
    Doom, T. S.
    ter Maten, E. J. W.
    Croon, J. A.
    Di Bucchianico, A.
    Wittich, O.
    ESSCIRC 2008: PROCEEDINGS OF THE 34TH EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, 2008, : 230 - +