Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling

被引:82
|
作者
Saha, S [1 ]
Kay, SM [1 ]
机构
[1] Univ Rhode Isl, Dept Elect & Comp Engn, Kingston, RI 02881 USA
关键词
Superimposed chirps;
D O I
10.1109/78.978378
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the problem of parameter estimation of superimposed chirp signals in noise. The approach used here is a computationally modest implementation of a maximum likelihood (ML) technique. The ML technique for estimating the complex amplitudes, chirping rates, and frequencies reduces to a separable optimization problem where the chirping rates and frequencies are determined by maximizing a compressed likelihood function that is a function of only the chirping rates and frequencies. Since the compressed likelihood function is multidimensional, its maximization via a grid search is impractical. We propose a noniterative maximization of the compressed likelihood function using importance sampling. Simulation results are presented for a scenario involving closely spaced parameters for the individual signals.
引用
收藏
页码:224 / 230
页数:7
相关论文
共 50 条
  • [21] Estimation of stochastic volatility models via Monte Carlo maximum likelihood
    Sandmann, G
    Koopman, SJ
    JOURNAL OF ECONOMETRICS, 1998, 87 (02) : 271 - 301
  • [22] A Monte-Carlo algorithm for maximum likelihood estimation of variance components
    Xu, S
    Atchley, WR
    GENETICS SELECTION EVOLUTION, 1996, 28 (04) : 329 - 343
  • [23] Maximum likelihood estimation for a binomial parameter using double sampling with one type of misclassification
    U.S. Food and Drug Administration, Silver Spring
    MD
    20993, United States
    不详
    IN
    46285, United States
    Am J Math Manage Sci, 2 (184-196): : 184 - 196
  • [24] Parameter Estimation with Mixture Item Response Theory Models: A Monte Carlo Comparison of Maximum Likelihood and Bayesian Methods
    Finch, W. Holmes
    French, Brian F.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2012, 11 (01) : 167 - 178
  • [25] A Comparison of Maximum Likelihood and Expected A Posteriori Estimation for Polychoric Correlation Using Monte Carlo Simulation
    Chen, Jinsong
    Choi, Jaehwa
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2009, 8 (01) : 337 - 354
  • [26] Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling
    Blasone, Roberta-Serena
    Vrugt, Jasper A.
    Madsen, Henrik
    Rosbjerg, Dan
    Robinson, Bruce A.
    Zyvoloski, George A.
    ADVANCES IN WATER RESOURCES, 2008, 31 (04) : 630 - 648
  • [27] EXACT MAXIMUM-LIKELIHOOD PARAMETER-ESTIMATION OF SUPERIMPOSED EXPONENTIAL SIGNALS IN NOISE
    BRESLER, Y
    MACOVSKI, A
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (05): : 1081 - 1089
  • [28] Differential importance measures estimation through Monte Carlo and importance sampling techniques
    La Rovere, S.
    Vestrucci, P.
    Sperandii, M.
    ADVANCES IN SAFETY, RELIABILITY AND RISK MANAGEMENT, 2012, : 2237 - 2245
  • [29] MAXIMUM-LIKELIHOOD PARAMETER-ESTIMATION OF SUPERIMPOSED SIGNALS BY DYNAMIC-PROGRAMMING
    YAU, SF
    BRESLER, Y
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (02) : 804 - 820
  • [30] Structural damage identification based on parameter identification using Monte Carlo method and likelihood estimation
    Sato, T.
    Zhao, L.
    Wan, C.
    ADVANCES IN ENGINEERING MATERIALS, STRUCTURES AND SYSTEMS: INNOVATIONS, MECHANICS AND APPLICATIONS, 2019, : 2078 - 2083