Strong Structural Controllability of Signed Networks

被引:0
|
作者
Mousavi, Shima Sadat [1 ]
Haeri, Mohammad [1 ]
Mesbahi, Mehran [2 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
[2] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
关键词
ZERO FORCING SETS; MINIMUM RANK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss the controllability of a family of linear time-invariant (LTI) networks defined on a signed graph. In this direction, we introduce the notion of positive and negative signed zero forcing sets for the controllability analysis of positive and negative eigenvalues of system matrices with the same sign pattern. A sufficient combinatorial condition that ensures the strong structural controllability of signed networks is then proposed. Moreover, an upper bound on the maximum multiplicity of positive and negative eigenvalues associated with a signed graph is provided.
引用
收藏
页码:4557 / 4562
页数:6
相关论文
共 50 条
  • [31] Structural and Strong Structural Controllability: Survey and New Results
    Svaricek, Ferdinand
    Jarczyk, Jan Christian
    Alt, Benedikt
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2011, 59 (06) : 329 - 339
  • [32] Structural Controllability of Symmetric Networks
    Menara, Tommaso
    Bassett, Danielle S.
    Pasqualetti, Fabio
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (09) : 3740 - 3747
  • [33] Controllability of structural brain networks
    Shi Gu
    Fabio Pasqualetti
    Matthew Cieslak
    Qawi K. Telesford
    Alfred B. Yu
    Ari E. Kahn
    John D. Medaglia
    Jean M. Vettel
    Michael B. Miller
    Scott T. Grafton
    Danielle S. Bassett
    [J]. Nature Communications, 6
  • [34] Controllability of structural brain networks
    Gu, Shi
    Pasqualetti, Fabio
    Cieslak, Matthew
    Telesford, Qawi K.
    Yu, Alfred B.
    Kahn, Ari E.
    Medaglia, John D.
    Vettel, Jean M.
    Miller, Michael B.
    Grafton, Scott T.
    Bassett, Danielle S.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [35] Structural controllability of temporal networks
    Posfai, Marton
    Hoevel, Philipp
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [36] Structural Reconstruction of Signed Social Networks
    Arya, Aikta
    Pandey, Pradumn Kumar
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (05) : 2599 - 2612
  • [37] Spreading and Structural Balance on Signed Networks
    Tian, Yu
    Lambiotte, Renaud
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (01): : 50 - 80
  • [38] Reversing structural balance in signed networks
    Du, Haifeng
    He, Xiaochen
    Wang, Jingjing
    Feldman, Marcus W.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 503 : 780 - 792
  • [39] Structural Balance in Fully Signed Networks
    Du, Haifeng
    He, Xiaochen
    Feldman, Marcus W.
    [J]. COMPLEXITY, 2016, 21 (S1) : 497 - 511
  • [40] Visualizing Structural Balance in Signed Networks
    Galimberti, Edoardo
    Madeddu, Chiara
    Bonchi, Francesco
    Ruffo, Giancarlo
    [J]. COMPLEX NETWORKS AND THEIR APPLICATIONS VIII, VOL 2, 2020, 882 : 53 - 65