Controllability of structural brain networks

被引:551
|
作者
Gu, Shi [1 ,2 ]
Pasqualetti, Fabio [3 ]
Cieslak, Matthew [4 ]
Telesford, Qawi K. [2 ,5 ]
Yu, Alfred B. [5 ]
Kahn, Ari E. [2 ]
Medaglia, John D. [2 ]
Vettel, Jean M. [4 ,5 ]
Miller, Michael B. [4 ]
Grafton, Scott T. [4 ]
Bassett, Danielle S. [2 ,6 ]
机构
[1] Univ Penn, Dept Appl Math & Computat Sci, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[3] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[4] Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA
[5] Army Res Lab, Translat Neurosci Branch, Aberdeen, MD 20783 USA
[6] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
RICH-CLUB ORGANIZATION; STATE FUNCTIONAL CONNECTIVITY; RESTING-STATE; COGNITIVE CONTROL; HUMAN CONNECTOME; HUBS; ARCHITECTURE; ATTENTION;
D O I
10.1038/ncomms9414
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Controllability of structural brain networks
    Shi Gu
    Fabio Pasqualetti
    Matthew Cieslak
    Qawi K. Telesford
    Alfred B. Yu
    Ari E. Kahn
    John D. Medaglia
    Jean M. Vettel
    Michael B. Miller
    Scott T. Grafton
    Danielle S. Bassett
    Nature Communications, 6
  • [2] Controllability of Functional and Structural Brain Networks
    Amani, Ali Moradi
    Tahmassebi, Amirhessam
    Stadlbauer, Andreas
    Meyer-Baese, Uwe
    Noblet, Vincent
    Blanc, Frederic
    Malberg, Hagen
    Meyer-Baese, Anke
    COMPLEXITY, 2024, 2024
  • [3] Controllability of Structural Brain Networks in Dementia
    Meyer-Baese, Lisa
    Saad, Fatima
    Tahmassebi, Amirhessam
    MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [4] Structural Target Controllability of Brain Networks in Dementia
    Tahmassebi, Amirhessam
    Meyer-Baese, Uwe
    Meyer-Baese, Anke
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3978 - 3981
  • [5] Controllability Analysis of Structural Brain Networks in Young Smokers
    Ding, Jing-Jing
    Dong, Fang
    Wang, Hong-De
    Yuan, Kai
    Cheng, Yong-Xin
    Wang, Juan
    Ma, Yu-Xin
    Xue, Ting
    Yu, Da-Hua
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2025, 52 (01) : 182 - 193
  • [6] The impact of input node placement in the controllability of structural brain networks
    Alizadeh Darbandi, Seyed Samie
    Fornito, Alex
    Ghasemi, Abdorasoul
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [7] A practical guide to methodological considerations in the controllability of structural brain networks
    Karrer, Teresa M.
    Kim, Jason Z.
    Stiso, Jennifer
    Kahn, Ari E.
    Pasqualetti, Fabio
    Habel, Ute
    Bassett, Danielle S.
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (02)
  • [8] The Functional Regions in Structural Controllability of Human Functional Brain Networks
    Yao, Peng
    Li, Cong
    Li, Xiang
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1603 - 1608
  • [9] Structural Controllability of Symmetric Networks
    Menara, Tommaso
    Bassett, Danielle S.
    Pasqualetti, Fabio
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (09) : 3740 - 3747
  • [10] Strong structural controllability of networks
    Monshizadeh, Nima
    Lecture Notes in Control and Information Sciences, 2015, 462 : 183 - 197