A practical guide to methodological considerations in the controllability of structural brain networks

被引:58
|
作者
Karrer, Teresa M. [1 ,2 ]
Kim, Jason Z. [2 ]
Stiso, Jennifer [3 ]
Kahn, Ari E. [3 ]
Pasqualetti, Fabio [4 ]
Habel, Ute [1 ,5 ,6 ]
Bassett, Danielle S. [2 ,7 ,8 ,9 ,10 ,11 ]
机构
[1] Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy & Psychosomat, Fac Med, Aachen, Germany
[2] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Dept Neurosci, Philadelphia, PA 19104 USA
[4] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[5] JARA Translat Brain Med, Aachen, Germany
[6] Res Ctr Julich, Inst Neurosci & Med, JARA Inst Brain Struct Funct Relationship INM 10, Julich, Germany
[7] Univ Penn, Coll Arts & Sci, Dept Phys & Astron, Philadelphia, PA 19104 USA
[8] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[9] Univ Penn, Dept Psychiat, Perelman Sch Med, Philadelphia, PA 19104 USA
[10] Univ Penn, Sch Engn & Appl Sci, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[11] Santa Fe Inst, Santa Fe, NM 87501 USA
基金
美国国家科学基金会;
关键词
network neuroscience; control theory; structural connectivity; diffusion imaging; RESTING-STATE; FUNCTIONAL CONNECTIVITY; DYNAMICAL-SYSTEMS; COMPLEX; ORGANIZATION; TRACTOGRAPHY; CONNECTOME; PLASTICITY; MODELS; MOTOR;
D O I
10.1088/1741-2552/ab6e8b
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Predicting how the brain can be driven to specific states by means of internal or external control requires a fundamental understanding of the relationship between neural connectivity and activity. Network control theory is a powerful tool from the physical and engineering sciences that can provide insights regarding that relationship; it formalizes the study of how the dynamics of a complex system can arise from its underlying structure of interconnected units. Approach. Given the recent use of network control theory in neuroscience, it is now timely to offer a practical guide to methodological considerations in the controllability of structural brain networks. Here we provide a systematic overview of the framework, examine the impact of modeling choices on frequently studied control metrics, and suggest potentially useful theoretical extensions. We ground our discussions, numerical demonstrations, and theoretical advances in a dataset of high-resolution diffusion imaging with 730 diffusion directions acquired over approximately 1 h of scanning from ten healthy young adults. Main results. Following a didactic introduction of the theory, we probe how a selection of modeling choices affects four common statistics: average controllability, modal controllability, minimum control energy, and optimal control energy. Next, we extend the current state-of-the-art in two ways: first, by developing an alternative measure of structural connectivity that accounts for radial propagation of activity through abutting tissue, and second, by defining a complementary metric quantifying the complexity of the energy landscape of a system. We close with specific modeling recommendations and a discussion of methodological constraints. Significance. Our hope is that this accessible account will inspire the neuroimaging community to more fully exploit the potential of network control theory in tackling pressing questions in cognitive, developmental, and clinical neuroscience.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Controllability of structural brain networks
    Shi Gu
    Fabio Pasqualetti
    Matthew Cieslak
    Qawi K. Telesford
    Alfred B. Yu
    Ari E. Kahn
    John D. Medaglia
    Jean M. Vettel
    Michael B. Miller
    Scott T. Grafton
    Danielle S. Bassett
    Nature Communications, 6
  • [2] Controllability of structural brain networks
    Gu, Shi
    Pasqualetti, Fabio
    Cieslak, Matthew
    Telesford, Qawi K.
    Yu, Alfred B.
    Kahn, Ari E.
    Medaglia, John D.
    Vettel, Jean M.
    Miller, Michael B.
    Grafton, Scott T.
    Bassett, Danielle S.
    NATURE COMMUNICATIONS, 2015, 6
  • [3] Controllability of Functional and Structural Brain Networks
    Amani, Ali Moradi
    Tahmassebi, Amirhessam
    Stadlbauer, Andreas
    Meyer-Baese, Uwe
    Noblet, Vincent
    Blanc, Frederic
    Malberg, Hagen
    Meyer-Baese, Anke
    COMPLEXITY, 2024, 2024
  • [4] Controllability of Structural Brain Networks in Dementia
    Meyer-Baese, Lisa
    Saad, Fatima
    Tahmassebi, Amirhessam
    MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [5] Brain imaging and psychotherapy: methodological considerations and practical implications
    Linden, David E. J.
    EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE, 2008, 258 (Suppl 5) : 71 - 75
  • [6] Brain imaging and psychotherapy: methodological considerations and practical implications
    David E. J. Linden
    European Archives of Psychiatry and Clinical Neuroscience, 2008, 258 : 71 - 75
  • [7] Applying neural networks to practical problems - Methodological considerations
    Paprzycki, M.
    Costeines, A.
    Douglas, W.
    Gatling, P.
    Niess, R.
    Scardino, L.
    Informatica (Ljubljana), 2001, 25 (01) : 11 - 17
  • [8] Structural Target Controllability of Brain Networks in Dementia
    Tahmassebi, Amirhessam
    Meyer-Baese, Uwe
    Meyer-Baese, Anke
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3978 - 3981
  • [9] Practical theology: A methodological guide
    de Limbourg, J. -P.
    EPHEMERIDES THEOLOGICAE LOVANIENSES, 2020, 96 (01): : 179 - 181
  • [10] The impact of input node placement in the controllability of structural brain networks
    Alizadeh Darbandi, Seyed Samie
    Fornito, Alex
    Ghasemi, Abdorasoul
    SCIENTIFIC REPORTS, 2024, 14 (01)