Second-order logic and foundations of mathematics

被引:50
|
作者
Väänänen, J [1 ]
机构
[1] Univ Helsinki, Dept Math, SF-00100 Helsinki, Finland
关键词
D O I
10.2307/2687796
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the differences between first-order set theory and second-order logic as a foundation for mathematics. We analyse these languages in terms of two levels of formalization. The analysis shows that if second-order logic is understood in its full semantics capable of characterizing categorically central mathematical concepts. it relies entirely on informal reasoning. On the other hand. if it is given a weak servant cs, it loses its power in expressing concepts categorically. First-order set theory and seconJ-order logic are not radically different: the latter is a major fragment of the former.
引用
收藏
页码:504 / 520
页数:17
相关论文
共 50 条
  • [41] On translations of temporal logic of actions into monadic second-order logic
    Rabinovich, A
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 193 (1-2) : 197 - 214
  • [42] A Syntactic Embedding of Predicate Logic into Second-Order Propositional Logic
    Sorensen, Morten H.
    Urzyczyn, Pawel
    [J]. NOTRE DAME JOURNAL OF FORMAL LOGIC, 2010, 51 (04) : 457 - 473
  • [43] A NOTE ON CHOICE PRINCIPLES IN SECOND-ORDER LOGIC
    Siskind, B. E. N. J. A. M. I. N.
    Mancosu, P. A. O. L. O.
    Shapiro, S. T. E. W. A. R. T.
    [J]. REVIEW OF SYMBOLIC LOGIC, 2023, 16 (02): : 339 - 350
  • [44] Second-Order Equational Logic (Extended Abstract)
    Fiore, Marcelo
    Hur, Chung-Kil
    [J]. COMPUTER SCIENCE LOGIC, 2010, 6247 : 320 - +
  • [45] Second-order Science: Logic, Strategies, Methods
    Umpleby, Stuart A.
    [J]. CONSTRUCTIVIST FOUNDATIONS, 2014, 10 (01): : 16 - 23
  • [46] On the Parameterised Intractability of Monadic Second-Order Logic
    Kreutzer, Stephan
    [J]. COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2009, 5771 : 348 - 363
  • [47] INTERPRETATIONS BETWEEN ω-LOGIC AND SECOND-ORDER ARITHMETIC
    Kaye, Richard
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2014, 79 (03) : 845 - 858
  • [48] Second-Order Observation in Social Science: Autopoietic Foundations
    Buchinger, Eva
    [J]. CONSTRUCTIVIST FOUNDATIONS, 2014, 10 (01): : 32 - 33
  • [49] Second-order Models of Students' Mathematics: Delving into Possibilities
    Dooley, Therese
    [J]. CONSTRUCTIVIST FOUNDATIONS, 2014, 9 (03): : 346 - 348
  • [50] Do We also Need Second-Order Mathematics?
    Van Bendegem, Jean Paul
    [J]. CONSTRUCTIVIST FOUNDATIONS, 2014, 10 (01): : 34 - 35