Estimating the Period of a Cyclic Non-Homogeneous Poisson Process

被引:4
|
作者
Belitser, Eduard [1 ]
Serra, Paulo [1 ]
Van Zanten, Harry [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math, NL-5600 MB Eindhoven, Netherlands
关键词
ergodic theorem; identifiability; m-estimator non-homogeneous poisson process; periodic estimation; period intensity; semi-parametric estimation; INTENSITY FUNCTION;
D O I
10.1111/j.1467-9469.2012.00806.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
. Motivated by applications of Poisson processes for modelling periodic time-varying phenomena, we study a semi-parametric estimator of the period of cyclic intensity function of a non-homogeneous Poisson process. There are no parametric assumptions on the intensity function which is treated as an infinite dimensional nuisance parameter. We propose a new family of estimators for the period of the intensity function, address the identifiability and consistency issues and present simulations which demonstrate good performance of the proposed estimation procedure in practice. We compare our method to competing methods on synthetic data and apply it to a real data set from a call center.
引用
收藏
页码:204 / 218
页数:15
相关论文
共 50 条
  • [1] The fractional non-homogeneous Poisson process
    Leonenko, Nikolai
    Scalas, Enrico
    Trinh, Mailan
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 120 : 147 - 156
  • [2] STASTISTICS OF PARTICULAR NON-HOMOGENEOUS POISSON PROCESS
    WILLIS, DM
    [J]. BIOMETRIKA, 1964, 51 (3-4) : 399 - &
  • [3] The quasar luminosity function as a non-homogeneous poisson process
    Hugeback, Angela
    Coram, Marc A.
    Jester, Sebastian
    [J]. STATISTICAL CHALLENGES IN MODERN ASTRONOMY IV, 2007, 371 : 417 - +
  • [4] Multitype branching process with non-homogeneous Poisson and contagious Poisson immigration
    Rabehasaina, Landy
    Woo, Jae-Kyung
    [J]. JOURNAL OF APPLIED PROBABILITY, 2021, 58 (04) : 1007 - 1042
  • [5] On maximum likelihood estimation for a general non-homogeneous Poisson process
    Zhao, M
    Xie, M
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (04) : 597 - 607
  • [6] Truncated Non-homogeneous Poisson Process Models — Properties and Performance
    Michael Grottke
    Kishor S. Trivedi
    [J]. OPSEARCH, 2005, 42 (4) : 310 - 321
  • [7] A non-homogeneous Poisson process geostatistical model with spatial deformation
    Morales, Fidel Ernesto Castro
    Vicini, Lorena
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2020, 104 (03) : 503 - 527
  • [8] A non-homogeneous Poisson process geostatistical model with spatial deformation
    Fidel Ernesto Castro Morales
    Lorena Vicini
    [J]. AStA Advances in Statistical Analysis, 2020, 104 : 503 - 527
  • [9] The Application of Non-homogeneous Poisson Process in Tractors Reliability Model
    Ao, Changlin
    Zhang, Yazhuo
    Li, Yijun
    [J]. 15TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2009, : 401 - +
  • [10] Non-Homogeneous Poisson Process Model for Genetic Crossover Interference
    Leu, Szu-Yun
    Sen, Pranab K.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (01) : 44 - 71