Non-Homogeneous Poisson Process Model for Genetic Crossover Interference

被引:0
|
作者
Leu, Szu-Yun [1 ]
Sen, Pranab K. [2 ]
机构
[1] Univ Calif Irvine, Inst Clin & Translat Sci, Dept Pediat, Irvine, CA 92697 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC USA
关键词
Crossover; Interference; Non-homogeneous; Poisson; STATISTICAL-ANALYSIS; CROSSING-OVER; RECOMBINATION;
D O I
10.1080/03610926.2012.655876
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The genetic crossover interference is usually modeled with a stationary renewal process to construct the genetic map. We propose two non homogeneous, also dependent, Poisson process models applied to the known physical map. The crossover process is assumed to start from an origin and to occur sequentially along the chromosome. The increment rate depends on the position of the markers and the number of crossover events occurring between the origin and the markers. We show how to obtain parameter estimates for the process and use simulation studies and real Drosophila data to examine the performance of the proposed models.
引用
收藏
页码:44 / 71
页数:28
相关论文
共 50 条
  • [1] The fractional non-homogeneous Poisson process
    Leonenko, Nikolai
    Scalas, Enrico
    Trinh, Mailan
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 120 : 147 - 156
  • [2] The Application of Non-homogeneous Poisson Process in Tractors Reliability Model
    Ao, Changlin
    Zhang, Yazhuo
    Li, Yijun
    [J]. 15TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2009, : 401 - +
  • [3] A non-homogeneous Poisson process geostatistical model with spatial deformation
    Morales, Fidel Ernesto Castro
    Vicini, Lorena
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2020, 104 (03) : 503 - 527
  • [4] A non-homogeneous Poisson process geostatistical model with spatial deformation
    Fidel Ernesto Castro Morales
    Lorena Vicini
    [J]. AStA Advances in Statistical Analysis, 2020, 104 : 503 - 527
  • [5] STASTISTICS OF PARTICULAR NON-HOMOGENEOUS POISSON PROCESS
    WILLIS, DM
    [J]. BIOMETRIKA, 1964, 51 (3-4) : 399 - &
  • [6] A transient process observation method based on the non-homogeneous Poisson process model *
    Zhao, Kuo
    Ouyang, Xiao-Ping
    Guo, Hui-Ping
    Chen, Liang
    Zhou, Lei-Dang
    Ruan, Jin-Lu
    Wang, Han
    Lv, Ning
    Gao, Run-Long
    [J]. CHINESE PHYSICS C, 2021, 45 (04)
  • [7] A transient process observation method based on the non-homogeneous Poisson process model
    赵括
    欧阳晓平
    过惠平
    陈亮
    周磊簜
    阮金陆
    王涵
    吕宁
    高润龙
    [J]. Chinese Physics C, 2021, 45 (04) : 398 - 407
  • [8] A non-homogeneous Poisson process predictive model for automobile warranty claims
    Majeske, Karl D.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2007, 92 (02) : 243 - 251
  • [9] A Dynamic Residential Load Model Based on a Non-homogeneous Poisson Process
    Casella I.R.S.
    Sanches B.C.S.
    Filho A.J.S.
    Capovilla C.E.
    [J]. Journal of Control, Automation and Electrical Systems, 2016, 27 (6) : 670 - 679
  • [10] Prediction in a non-homogeneous Poisson cluster model
    Matsui, Muneya
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2014, 55 : 10 - 17