The fractional non-homogeneous Poisson process

被引:26
|
作者
Leonenko, Nikolai [1 ]
Scalas, Enrico [2 ]
Trinh, Mailan [2 ]
机构
[1] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, S Glam, Wales
[2] Univ Sussex, Dept Math, Sch Math & Phys Sci, Brighton BN1 9QH, E Sussex, England
基金
澳大利亚研究理事会;
关键词
Fractional point processes; Levy processes; Time-change; Subordination;
D O I
10.1016/j.spl.2016.09.024
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a non-homogeneous fractional Poisson process by replacing the time variable in the fractional Poisson process of renewal type with an appropriate function of time. We characterize the resulting process by deriving its non-local governing equation. We further compute the first and second moments of the process. Eventually, we derive the distribution of arrival times. Constant reference is made to previous known results in the homogeneous case and to how they can be derived from the specialization of the non homogeneous process. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [1] STASTISTICS OF PARTICULAR NON-HOMOGENEOUS POISSON PROCESS
    WILLIS, DM
    [J]. BIOMETRIKA, 1964, 51 (3-4) : 399 - &
  • [2] Non-homogeneous space-time fractional Poisson processes
    Maheshwari, A.
    Vellaisamy, P.
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (02) : 137 - 154
  • [3] The quasar luminosity function as a non-homogeneous poisson process
    Hugeback, Angela
    Coram, Marc A.
    Jester, Sebastian
    [J]. STATISTICAL CHALLENGES IN MODERN ASTRONOMY IV, 2007, 371 : 417 - +
  • [4] Estimating the Period of a Cyclic Non-Homogeneous Poisson Process
    Belitser, Eduard
    Serra, Paulo
    Van Zanten, Harry
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 204 - 218
  • [5] Multitype branching process with non-homogeneous Poisson and contagious Poisson immigration
    Rabehasaina, Landy
    Woo, Jae-Kyung
    [J]. JOURNAL OF APPLIED PROBABILITY, 2021, 58 (04) : 1007 - 1042
  • [6] Truncated Non-homogeneous Poisson Process Models — Properties and Performance
    Michael Grottke
    Kishor S. Trivedi
    [J]. OPSEARCH, 2005, 42 (4) : 310 - 321
  • [7] On maximum likelihood estimation for a general non-homogeneous Poisson process
    Zhao, M
    Xie, M
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (04) : 597 - 607
  • [8] Non-Homogeneous Poisson Process Model for Genetic Crossover Interference
    Leu, Szu-Yun
    Sen, Pranab K.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (01) : 44 - 71
  • [9] The Application of Non-homogeneous Poisson Process in Tractors Reliability Model
    Ao, Changlin
    Zhang, Yazhuo
    Li, Yijun
    [J]. 15TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2009, : 401 - +
  • [10] A non-homogeneous Poisson process geostatistical model with spatial deformation
    Morales, Fidel Ernesto Castro
    Vicini, Lorena
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2020, 104 (03) : 503 - 527