Transversality and Alternating Projections for Nonconvex Sets

被引:57
|
作者
Drusvyatskiy, D. [1 ]
Ioffe, A. D. [2 ]
Lewis, A. S. [3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Cornell Univ, ORIE, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Alternating projections; Linear convergence; Variational analysis; Slope; Transversality; CONVERGENCE; REGULARITY; MANIFOLDS; SARD;
D O I
10.1007/s10208-015-9279-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the method of alternating projections for finding a point in the intersection of two closed sets, possibly nonconvex. Assuming only the standard transversality condition (or a weaker version thereof), we prove local linear convergence. When the two sets are semi-algebraic and bounded, but not necessarily transversal, we nonetheless prove subsequence convergence.
引用
收藏
页码:1637 / 1651
页数:15
相关论文
共 50 条
  • [41] A Stochastic Proximal Alternating Minimization for Nonsmooth and Nonconvex
    Driggs, Derek
    Tang, Junqi
    Liang, Jingwei
    Davies, Mike
    Schonlieb, Carola-Bibiane
    SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (04): : 1932 - 1970
  • [42] The Brunn–Minkowski Inequality and Nonconvex Sets
    IMRE Z. Ruzsa
    Geometriae Dedicata, 1997, 67 : 337 - 348
  • [43] ON THE PROPERLY EFFICIENT POINTS OF NONCONVEX SETS
    LUC, DT
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 86 (02) : 332 - 336
  • [44] Linear regularity and φ-regularity of nonconvex sets
    Ng, Kung Fu
    Zang, Rui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) : 257 - 280
  • [45] THE HAMILTONIAN INCLUSION FOR NONCONVEX VELOCITY SETS
    Vinter, Richard B.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (02) : 1237 - 1250
  • [46] Remarks on saddle points in nonconvex sets
    Park, S
    Kim, IS
    APPLIED MATHEMATICS LETTERS, 2000, 13 (01) : 111 - 113
  • [47] CONVERGENCE OF SETS AND OF PROJECTIONS
    LUCCHETTI, R
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4C (01): : 477 - 483
  • [48] Witness sets of projections
    Hauenstein, Jonathan D.
    Sommese, Andrew J.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3349 - 3354
  • [49] Convexification of nonconvex functions and application to minimum and maximum principles for nonconvex sets
    Wu, CX
    Cheng, LX
    Ha, MH
    Lee, ES
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (07) : 27 - 36
  • [50] SETS WITH DENSE PROJECTIONS
    MCMULLEN, C
    PACH, J
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (09): : 589 - 589