THE HAMILTONIAN INCLUSION FOR NONCONVEX VELOCITY SETS

被引:5
|
作者
Vinter, Richard B. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2BT, England
基金
英国工程与自然科学研究理事会;
关键词
optimal control; differential inclusions; Hamiltonian inclusion; EULER-LAGRANGE;
D O I
10.1137/130917417
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since Clarke's 1973 proof of the Hamiltonian inclusion for optimal control problems with convex velocity sets, there has been speculation (and, more recently, speculation relating to a stronger, partially convexified version of the Hamiltonian inclusion) as to whether these necessary conditions are valid in the absence of the convexity hypothesis. The issue was in part resolved by Clarke himself when, in 2005, he showed that L-infinity local minimizers satisfy the Hamiltonian inclusion. In this paper it is shown, by counterexample, that the Hamiltonian inclusion (and so also the stronger partially convexified Hamiltonian inclusion) are not in general valid for nonconvex velocity sets when the local minimizer in question is merely a W-1,W-1 local minimizer, not an L-infinity local minimizer. The counterexample demonstrates that the need to consider L-infinity local minimizers, not W-1,W-1 local minimizers, in the proof of the Hamiltonian inclusion for nonconvex velocity sets is fundamental, not just a technical restriction imposed by currently available proof techniques. The paper also establishes the validity of the partially convexified Hamiltonian inclusion for W-1,W-1 local minimizers under a normality assumption, thereby correcting earlier assertions in the literature.
引用
收藏
页码:1237 / 1250
页数:14
相关论文
共 50 条
  • [1] SECOND ORDER DIFFERENTIAL INCLUSION WITH UNBOUNDED NONCONVEX MOVING SETS
    Mecemma, Imene
    Lounis, Sabrina
    Yarou, Mustapha Fateh
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (04): : 67 - 78
  • [2] SECOND ORDER DIFFERENTIAL INCLUSION WITH UNBOUNDED NONCONVEX MOVING SETS
    Mecemma, Imene
    Lounis, Sabrina
    Yarou, Mustapha Fateh
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (04): : 67 - 78
  • [3] Construction of Singular Sets in a Velocity Control Problem with Nonconvex Target
    Lebedev, P. D.
    Uspenskii, A. A.
    IFAC PAPERSONLINE, 2018, 51 (32): : 681 - 686
  • [4] Subharmonics of nonconvex Hamiltonian systems
    Timoumi, M
    ARCHIV DER MATHEMATIK, 1999, 73 (06) : 422 - 429
  • [5] Subharmonics of nonconvex Hamiltonian systems
    M. Timoumi
    Archiv der Mathematik, 1999, 73 : 422 - 429
  • [6] EQUILIBRIA IN NONCONVEX SETS
    BENELMECHAIEKH, H
    KRYSZEWSKI, W
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (05): : 573 - 576
  • [7] ON A NONCONVEX HYPERBOLIC DIFFERENTIAL INCLUSION
    STAICU, V
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1992, 35 : 375 - 382
  • [8] Subharmonics of a Nonconvex Noncoercive Hamiltonian System
    N. Kallel
    M. Timoumi
    Ukrainian Mathematical Journal, 2003, 55 (11) : 1754 - 1764
  • [9] On a Separation Principle for Nonconvex Sets
    Li, Guoyin
    Tang, Chunming
    Yu, Gaohang
    Wei, Zengxin
    SET-VALUED ANALYSIS, 2008, 16 (7-8): : 851 - 860
  • [10] Minimization over Nonconvex Sets
    Membrilla, Jose Antonio Vilchez
    Moreno, Victor Salas
    Moreno-Pulido, Soledad
    Sanchez-Alzola, Alberto
    Cobos Sanchez, Clemente Cobos
    Garcia-Pacheco, Francisco Javier
    SYMMETRY-BASEL, 2024, 16 (07):