Comparison of Independent Component Analysis algorithms for EEG-fMRI data fusion

被引:0
|
作者
Youssofzadeh, Vahab [1 ]
Faye, Ibrahima [1 ]
Malik, Aamir Saeed [1 ]
Reza, Faruque [2 ]
Kamel, Nidal [1 ]
Abdullah, Jafri Malin [2 ]
机构
[1] Univ Teknol PETRONAS, Dept Elect & Elect Engn, Ctr Intelligent Signal & Imaging Res, Perak, Malaysia
[2] Hosp Univ Sains Malaysia, Dept Neurosci, Kota Baharu, Kelantan, Malaysia
关键词
SCHIZOPHRENIA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fusion of EEG and fMRI data helps researchers to provide a more comprehensive understanding of neural basis for the functional behavior in human brain. EEG and fMRI Joint analysis for cognitive tasks indicates plausible results to obtain a better spatiotemporal resolution of event related responses in the brain. Joint-ICA as a multivariate data analysis method, assumes more than two features type (modalities) have common mixing data and it tries to maximizes independency among joint components. Here, we study the performance of five ICA algorithms when applied to joint analysis of EEG/fMRI data. We use the visualization and computational tools to quantitatively analyze the performance of different ICA algorithms for EEG/fMRI fusion and discuss the results for the simulation and real data.
引用
下载
收藏
页码:676 / 679
页数:4
相关论文
共 50 条
  • [1] Mining EEG-fMRI using independent component analysis
    Eichele, Tom
    Calhoun, Vince D.
    Debener, Stefan
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2009, 73 (01) : 53 - 61
  • [2] Independent Component Analysis of EEG-fMRI data for studying epilepsy and epileptic seizures
    Franchin, Tiziana
    Tana, Maria G.
    Cannata, Vittorio
    Cerutti, Sergio
    Bianchi, Anna M.
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 6011 - 6014
  • [3] Unmixing concurrent EEG-fMRI with parallel independent component analysis
    Eichele, Tom
    Calhoun, Vince D.
    Moosmann, Matthias
    Specht, Karsten
    Jongsma, Marijtje L. A.
    Quiroga, Rodrigo Quian
    Nordby, Helge
    Hugdahl, Kenneth
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2008, 67 (03) : 222 - 234
  • [4] Joint independent component analysis for simultaneous EEG-fMRI: Principle and simulation
    Moosmann, Matthias
    Eichele, Tom
    Nordby, Helge
    Hugdahl, Kenneth
    Calhoun, Vince D.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2008, 67 (03) : 212 - 221
  • [5] Independent Component Analysis for EEG Data Preprocessing - Algorithms Comparison
    Rejer, Izabela
    Gorski, Pawel
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2013, 2013, 8104 : 108 - 119
  • [6] Comparison of separation performance of independent component analysis algorithms for fMRI data
    Sariya, Yogesh Kumar
    Anand, R. S.
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2017, 16 (02) : 157 - 175
  • [7] APPLICATION OF INDEPENDENT COMPONENT ANALYSIS FOR THE DATA MINING OF SIMULTANEOUS EEG-fMRI: PRELIMINARY EXPERIENCE ON SLEEP ONSET
    Lee, Jong-Hwan
    Oh, Sungsuk
    Jolesz, Ferenc A.
    Park, Hyunwook
    Yoo, Seung-Schik
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2009, 119 (08) : 1118 - 1136
  • [8] Independent Vector Analysis for Gradient Artifact Removal in Concurrent EEG-fMRI Data
    Acharjee, Partha Pratim
    Phlypo, Ronald
    Wu, Lei
    Calhoun, Vince D.
    Adali, Tuelay
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) : 1750 - 1758
  • [9] Independent Component Analysis (ICA) of Generalized Spike Wave Discharges in fMRI: Comparison with General Linear Model-Based EEG-fMRI
    Moeller, Friederike
    Levan, Pierre
    Gotman, Jean
    HUMAN BRAIN MAPPING, 2011, 32 (02) : 209 - 217
  • [10] INDEPENDENT COMPONENT ANALYSIS (ICA) OF GENERALIZED SPIKE WAVE DISCHARGES IN FMRI: COMPARISON WITH GENERAL LINEAR MODEL-BASED EEG-FMRI
    Moeller, Friederike
    LeVan, P.
    Gotman, J.
    EPILEPSIA, 2009, 50 : 89 - 89