Comparison of Independent Component Analysis algorithms for EEG-fMRI data fusion

被引:0
|
作者
Youssofzadeh, Vahab [1 ]
Faye, Ibrahima [1 ]
Malik, Aamir Saeed [1 ]
Reza, Faruque [2 ]
Kamel, Nidal [1 ]
Abdullah, Jafri Malin [2 ]
机构
[1] Univ Teknol PETRONAS, Dept Elect & Elect Engn, Ctr Intelligent Signal & Imaging Res, Perak, Malaysia
[2] Hosp Univ Sains Malaysia, Dept Neurosci, Kota Baharu, Kelantan, Malaysia
关键词
SCHIZOPHRENIA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fusion of EEG and fMRI data helps researchers to provide a more comprehensive understanding of neural basis for the functional behavior in human brain. EEG and fMRI Joint analysis for cognitive tasks indicates plausible results to obtain a better spatiotemporal resolution of event related responses in the brain. Joint-ICA as a multivariate data analysis method, assumes more than two features type (modalities) have common mixing data and it tries to maximizes independency among joint components. Here, we study the performance of five ICA algorithms when applied to joint analysis of EEG/fMRI data. We use the visualization and computational tools to quantitatively analyze the performance of different ICA algorithms for EEG/fMRI fusion and discuss the results for the simulation and real data.
引用
收藏
页码:676 / 679
页数:4
相关论文
共 50 条
  • [31] Neuroscience Information Toolbox: An Open Source Toolbox for EEG-fMRI Multimodal Fusion Analysis
    Dong, Li
    Luo, Cheng
    Liu, Xiaobo
    Jiang, Sisi
    Li, Fali
    Feng, Hongshuo
    Li, Jianfu
    Gong, Diankun
    Yao, Dezhong
    FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [32] A Comparison of Independent Component Analysis Algorithms and Measures to Discriminate between EEG and Artifact Components
    Dharmaprani, Dhani
    Nguyen, Hoang K.
    Lewis, Trent W.
    DeLosAngeles, Dylan
    Willoughby, John O.
    Pope, Kenneth J.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 825 - 828
  • [33] Topography-Related EEG-fMRI in Surgically Confirmed Epileptic Foci: A Comparison to Spike-Related EEG-fMRI in Clinical Practice
    Dimitrios Chatzistefanidis
    Dengfeng Huang
    Matthias Dümpelmann
    Julia Jacobs
    Andreas Schulze-Bonhage
    Pierre LeVan
    Brain Topography, 2021, 34 : 373 - 383
  • [34] Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI
    Philiastides, Marios G.
    Tu, Tao
    Sajda, Paul
    ANNUAL REVIEW OF NEUROSCIENCE, VOL 44, 2021, 2021, 44 : 315 - 334
  • [35] Convolutive independent component analysis of EEG data
    Yamazaki, A
    Tajima, T
    Matsuoka, K
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 1227 - 1231
  • [36] Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data
    Kim, Hyun-Chul
    Yoo, Seung-Schik
    Lee, Jong-Hwan
    NEUROIMAGE, 2015, 104 : 437 - 451
  • [37] Topography-Related EEG-fMRI in Surgically Confirmed Epileptic Foci: A Comparison to Spike-Related EEG-fMRI in Clinical Practice
    Chatzistefanidis, Dimitrios
    Huang, Dengfeng
    Dumpelmann, Matthias
    Jacobs, Julia
    Schulze-Bonhage, Andreas
    LeVan, Pierre
    BRAIN TOPOGRAPHY, 2021, 34 (03) : 373 - 383
  • [38] A Predictive Modeling Approach to Analyze Data in EEG-fMRI Experiments
    Ferdowsi, Saideh
    Sanei, Saeid
    Abolghasemi, Vahid
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2015, 25 (01)
  • [39] Bayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI
    Rosa, Maria J.
    Kilner, James M.
    Penny, Will D.
    PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (06)
  • [40] Multimodal Functional Network Connectivity: An EEG-fMRI Fusion in Network Space
    Lei, Xu
    Ostwald, Dirk
    Hu, Jiehui
    Qiu, Chuan
    Porcaro, Camillo
    Bagshaw, Andrew P.
    Yao, Dezhong
    PLOS ONE, 2011, 6 (09):