Random functions via Dyson Brownian Motion: progress and problems

被引:7
|
作者
Wang, Gaoyuan [1 ]
Battefeld, Thorsten [1 ]
机构
[1] Univ Goettingen, Inst Astrophys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
关键词
axions; string theory and cosmology; inflation;
D O I
10.1088/1475-7516/2016/09/008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C-2 locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also off er an ad hoc modification of DBM that suppresses this growth to some degree.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Integral kernels on complex symmetric spaces and for the Dyson Brownian Motion
    Graczyk, P.
    Sawyer, P.
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (07) : 1378 - 1405
  • [22] RANDOM MOTION AND BROWNIAN ROTATION
    WYLLIE, G
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1980, 61 (06): : 329 - 376
  • [23] Random walks and Brownian motion
    Castell, T
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1999, 18 (02): : 209 - 214
  • [24] Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary
    Gautie, Tristan
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (05) : 752 - 805
  • [25] Edge rigidity of Dyson Brownian motion with general initial data
    Aggarwal, Amol
    Huang, Jiaoyang
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [26] Multilevel Dyson Brownian motions via Jack polynomials
    Vadim Gorin
    Mykhaylo Shkolnikov
    Probability Theory and Related Fields, 2015, 163 : 413 - 463
  • [27] Multifractal Random Walks With Fractional Brownian Motion via Malliavin Calculus
    Fauth, Alexis
    Tudor, Ciprian A.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1963 - 1975
  • [28] ADDITIVE FUNCTIONS AND BROWNIAN MOTION
    BILLINGS.PP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (07): : 1050 - &
  • [29] FUNCTIONS OF BROWNIAN-MOTION
    WALSH, JB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) : 227 - 231
  • [30] Theta Functions and Brownian Motion
    Duncan, Tyrone E.
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (01) : 81 - 89