Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties

被引:4
|
作者
Ito, Atsushi [1 ]
Miura, Makoto [2 ]
Okawa, Shinnosuke [3 ]
Ueda, Kazushi [4 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
[2] Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South Korea
[3] Osaka Univ, Grad Sch Sci, Dept Math, Machikaneyama 1-1, Toyonaka, Osaka 5600043, Japan
[4] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
来源
SELECTA MATHEMATICA-NEW SERIES | 2020年 / 26卷 / 03期
关键词
CALABI-YAU; TORELLI PROBLEM; ZETA-FUNCTIONS; MOTIVES; NUMBER;
D O I
10.1007/s00029-020-00561-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the problem of whether the difference [ X]-[Y] of the classes of a Fourier-Mukai pair (X, Y) of smooth projective varieties in the Grothendieck ring of varieties is annihilated by some power of the class L = [A(1)] of the affine line. We give an affirmative answer for Fourier-Mukai pairs of very general K3 surfaces of degree 12. On the other hand, we prove that in each dimension greater than one, there exists an abelian variety such that the difference with its dual is not annihilated by any power of L, thereby giving a negative answer to the problem. We also discuss variations of the problem.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Equivariant derived equivalence and rational points on K3 surfaces
    Hassett, Brendan
    Tschinkel, Yuri
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2023, 17 (02) : 293 - 312
  • [22] NESTED VARIETIES OF K3 TYPE
    Bernardara, Marcello
    Fatighenti, Enrico
    Manivel, Laurent
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 733 - 778
  • [23] HILBERT SQUARES OF K3 SURFACES AND DEBARRE-VOISIN VARIETIES
    Debarre, Olivier
    Han, Frederic
    O'Grady, Kieran
    Voisin, Claire
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2020, 7 : 653 - 710
  • [24] SEVERI VARIETIES AND SELF-RATIONAL MAPS OF K3 SURFACES
    Dedieu, Thomas
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (12) : 1455 - 1477
  • [25] Real Multiplication on K3 Surfaces and Kuga-Satake Varieties
    van Geemen, Bert
    MICHIGAN MATHEMATICAL JOURNAL, 2008, 56 (02) : 375 - 399
  • [26] DERIVED EQUIVALENT SURFACES AND ABELIAN VARIETIES, AND THEIR ZETA FUNCTIONS
    Honigs, Katrina
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) : 4161 - 4166
  • [27] Reduction of Brauer classes on K3 surfaces, rationality and derived equivalence
    Frei, Sarah
    Hassett, Brendan
    Varilly-Alvarado, Anthony
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (792): : 289 - 305
  • [28] K3 surfaces of genus 8 and varieties of sums of powers of cubic fourfolds
    Iliev, A
    Ranestad, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (04) : 1455 - 1468
  • [29] Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties
    Arbarello, E.
    Sacca, G.
    ADVANCES IN MATHEMATICS, 2018, 329 : 649 - 703
  • [30] Lie Bialgebras on k3 and Lagrange Varieties
    Hong, Wei
    Liu, Zhangju
    JOURNAL OF LIE THEORY, 2009, 19 (04) : 639 - 659