Lie Bialgebras on k3 and Lagrange Varieties

被引:1
|
作者
Hong, Wei [1 ,2 ]
Liu, Zhangju [1 ,2 ]
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[2] Peking Univ, LMAM, Beijing 100871, Peoples R China
关键词
Lie bialgebra; Lagrange subalgebra; POISSON HOMOGENEOUS SPACES; CLASSIFICATION; SUBALGEBRAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lie bialgebras on k(3) and the corresponding Lagrange varieties are classified by means of a pair of quadratic forms on k(4), where k is a field whose characteristic is not 2. It turns out that any Lagrange variety is composed of two (possibly degenerate) quadratic surfaces in kP(3) defined by the above quadratic forms respectively.
引用
收藏
页码:639 / 659
页数:21
相关论文
共 50 条
  • [1] NESTED VARIETIES OF K3 TYPE
    Bernardara, Marcello
    Fatighenti, Enrico
    Manivel, Laurent
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 733 - 778
  • [2] 3-LIE BIALGEBRAS
    白瑞蒲
    程宇
    李佳倩
    孟伟
    Acta Mathematica Scientia, 2014, 34 (02) : 513 - 522
  • [3] 3-Leibniz bialgebras (3-Lie bialgebras)
    Rezaei-Aghdam, A.
    Sedghi-Ghadim, L.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (10)
  • [4] 3-LIE BIALGEBRAS
    Bai, Ruipu
    Cheng, Yu
    Lie, Jiaqian
    Meng, Wei
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (02) : 513 - 522
  • [5] ON THE IRREDUCIBILITY OF SEVERI VARIETIES ON K3 SURFACES
    Ciliberto, C.
    Dedieu, Th.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (10) : 4233 - 4244
  • [6] Reductions of abelian varieties and K3 surfaces
    Shankar, Ananth N.
    Tang, Yunqing
    JOURNAL OF NUMBER THEORY, 2025, 270 : 122 - 166
  • [7] ON UNIFORMITY CONJECTURES FOR ABELIAN VARIETIES AND K3 SURFACES
    Orr, Martin
    Skorobogatov, Alexei N.
    Zarhin, Yuri G.
    AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (06) : 1665 - 1702
  • [8] Jordan bialgebras and their relation to Lie bialgebras
    V. N. Zhelyabin
    Algebra and Logic, 1997, 36 (1) : 1 - 15
  • [9] Strongly Homotopy Lie Bialgebras and Lie Quasi-bialgebras
    Olga Kravchenko
    Letters in Mathematical Physics, 2007, 81 : 19 - 40
  • [10] Strongly homotopy lie bialgebras and lie quasi-bialgebras
    Kravchenko, Olga
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 81 (01) : 19 - 40