First passage times for multidimensional denumerable state Markov processes

被引:4
|
作者
Xu, GH [1 ]
Xu, DJ
机构
[1] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
[2] CAS, Asian Pacific Operat Res Ctr, Beijing 100080, Peoples R China
[3] APORS, Beijing 100080, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 1999年 / 44卷 / 11期
关键词
multidimensional denumerable state Markov process; first passage time; uniformization; uniform error;
D O I
10.1007/BF02886012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a general multidimensional denumerable state Markov process with any initial state probability vector, the probability density function and its LS transform of the first passage time to a certain given state set are obtained and the algorithms for them are derived. It is proved that the resulting errors of the algorithms are both uniform in their respective arguments. Some numerical results are presented.
引用
收藏
页码:970 / 980
页数:11
相关论文
共 50 条
  • [41] GENERAL BOUNDARY CONDITIONS FOR DENUMERABLE MARKOV PROCESSES
    DYNKIN, EB
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1967, 12 (02): : 187 - &
  • [42] SEMIORDERING OF PROBABILITIES OF FIRST PASSAGE TIME OF MARKOV PROCESSES
    KALMYKOV, GI
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (04): : 704 - &
  • [43] Constrained Markov decision processes with first passage criteria
    Yonghui Huang
    Qingda Wei
    Xianping Guo
    Annals of Operations Research, 2013, 206 : 197 - 219
  • [44] Constrained Markov decision processes with first passage criteria
    Huang, Yonghui
    Wei, Qingda
    Guo, Xianping
    ANNALS OF OPERATIONS RESEARCH, 2013, 206 (01) : 197 - 219
  • [45] FINITE STATE APPROXIMATION ALGORITHMS FOR AVERAGE COST DENUMERABLE STATE MARKOV DECISION-PROCESSES
    THOMAS, LC
    STENGOS, D
    OR SPEKTRUM, 1985, 7 (01) : 27 - 37
  • [46] Exponentiality of First Passage Times of Continuous Time Markov Chains
    Romain Bourget
    Loïc Chaumont
    Natalia Sapoukhina
    Acta Applicandae Mathematicae, 2014, 131 : 197 - 212
  • [47] Markov chain sensitivity measured by mean first passage times
    Cho, GE
    Meyer, CD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 316 (1-3) : 21 - 28
  • [48] Higher order ergodic Markov chains and first passage times
    Han, Lixing
    Wang, Kelun
    Xu, Jianhong
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6772 - 6779
  • [49] Exponentiality of First Passage Times of Continuous Time Markov Chains
    Bourget, Romain
    Chaumont, Loic
    Sapoukhina, Natalia
    ACTA APPLICANDAE MATHEMATICAE, 2014, 131 (01) : 197 - 212
  • [50] Extreme value statistics of ergodic Markov processes from first passage times in the large deviation limit
    Hartich, David
    Godec, Aljaz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (24)