Constraining Lorentz-violating, modified dispersion relations with gravitational waves

被引:149
|
作者
Mirshekari, Saeed [1 ]
Yunes, Nicolas [2 ,3 ,4 ]
Will, Clifford M. [1 ]
机构
[1] Washington Univ, Dept Phys, McDonnell Ctr Space Sci, St Louis, MO 63130 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Kavli Inst, Cambridge, MA 02139 USA
[4] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 02期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
PREFERRED-FRAME THEORIES; RELATIVISTIC GRAVITY; GENERAL-RELATIVITY; CONSERVATION-LAWS; COMPACT BINARIES;
D O I
10.1103/PhysRevD.85.024041
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Modified gravity theories generically predict a violation of Lorentz invariance, which may lead to a modified dispersion relation for propagating modes of gravitational waves. We construct a parametrized dispersion relation that can reproduce a range of known Lorentz-violating predictions and investigate their impact on the propagation of gravitational waves. A modified dispersion relation forces different wavelengths of the gravitational-wave train to travel at slightly different velocities, leading to a modified phase evolution observed at a gravitational-wave detector. We show how such corrections map to the waveform observable and to the parametrized post-Einsteinian framework, proposed to model a range of deviations from General Relativity. Given a gravitational-wave detection, the lack of evidence for such corrections could then be used to place a constraint on Lorentz violation. The constraints we obtain are tightest for dispersion relations that scale with small power of the graviton's momentum and deteriorate for a steeper scaling.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Eikonal approximation, Finsler structures, and implications for Lorentz-violating photons in weak gravitational fields
    Schreck, M.
    PHYSICAL REVIEW D, 2015, 92 (12):
  • [42] LIMITS ON A LORENTZ-VIOLATING AND PARITY-VIOLATING MODIFICATION OF ELECTRODYNAMICS
    CARROLL, SM
    FIELD, GB
    JACKIW, R
    PHYSICAL REVIEW D, 1990, 41 (04): : 1231 - 1240
  • [43] Top hadrons in Lorentz-violating field theory
    Altschul, Brett
    PHYSICAL REVIEW D, 2020, 102 (07)
  • [44] Astrophysically relevant processes in Lorentz-violating QED
    Satunin P.S.
    Physics of Particles and Nuclei Letters, 2013, 10 (7) : 615 - 617
  • [45] Calculation of cross sections in Lorentz-violating theories
    Rubtsov, Grigory
    Satunin, Petr
    Sibiryakov, Sergey
    PHYSICAL REVIEW D, 2012, 86 (08):
  • [46] Generalized bumblebee models and Lorentz-violating electrodynamics
    Seifert, Michael D.
    PHYSICAL REVIEW D, 2010, 81 (06)
  • [47] Three-dimensional Lorentz-violating action
    Nascimento, J. R.
    Petrov, A. Yu.
    Wotzasek, C.
    Zarro, C. A. D.
    PHYSICAL REVIEW D, 2014, 89 (06):
  • [48] Cerenkov radiation in a Lorentz-violating and birefringent vacuum
    Altschul, Brett
    PHYSICAL REVIEW D, 2007, 75 (10):
  • [49] Note on vortices from Lorentz-violating models
    Sourrouille, Lucas
    PHYSICAL REVIEW D, 2014, 89 (08):
  • [50] Ambiguities in the effective action in Lorentz-violating gravity
    Gomes, M.
    Mariz, T.
    Nascimento, J. R.
    Passos, E.
    Petrov, A. Yu.
    da Silva, A. J.
    PHYSICAL REVIEW D, 2008, 78 (02):