Constraining Lorentz-violating, modified dispersion relations with gravitational waves

被引:149
|
作者
Mirshekari, Saeed [1 ]
Yunes, Nicolas [2 ,3 ,4 ]
Will, Clifford M. [1 ]
机构
[1] Washington Univ, Dept Phys, McDonnell Ctr Space Sci, St Louis, MO 63130 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Kavli Inst, Cambridge, MA 02139 USA
[4] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 02期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
PREFERRED-FRAME THEORIES; RELATIVISTIC GRAVITY; GENERAL-RELATIVITY; CONSERVATION-LAWS; COMPACT BINARIES;
D O I
10.1103/PhysRevD.85.024041
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Modified gravity theories generically predict a violation of Lorentz invariance, which may lead to a modified dispersion relation for propagating modes of gravitational waves. We construct a parametrized dispersion relation that can reproduce a range of known Lorentz-violating predictions and investigate their impact on the propagation of gravitational waves. A modified dispersion relation forces different wavelengths of the gravitational-wave train to travel at slightly different velocities, leading to a modified phase evolution observed at a gravitational-wave detector. We show how such corrections map to the waveform observable and to the parametrized post-Einsteinian framework, proposed to model a range of deviations from General Relativity. Given a gravitational-wave detection, the lack of evidence for such corrections could then be used to place a constraint on Lorentz violation. The constraints we obtain are tightest for dispersion relations that scale with small power of the graviton's momentum and deteriorate for a steeper scaling.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Velocity in Lorentz-violating fermion theories
    Altschul, B
    Colladay, D
    PHYSICAL REVIEW D, 2005, 71 (12)
  • [32] Lorentz-violating alternative to the Higgs mechanism?
    Alexandre, Jean
    Mavromatos, Nick E.
    PHYSICAL REVIEW D, 2011, 84 (10):
  • [33] Lorentz-violating scenarios in a thermal reservoir
    Araujo Filho, A. A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (04):
  • [34] Bigravity and Lorentz-violating massive gravity
    Blas, D.
    Deffayet, C.
    Garriga, J.
    PHYSICAL REVIEW D, 2007, 76 (10):
  • [35] Threshold configurations in the presence of Lorentz violating dispersion relations
    Mattingly, D
    Jacobson, T
    Liberati, S
    PHYSICAL REVIEW D, 2003, 67 (12)
  • [36] Magnetic monopoles in Lorentz-violating electrodynamics
    Turcati, Rodrigo
    Scatena, Eslley
    PHYSICS LETTERS B, 2018, 786 : 332 - 336
  • [37] Detecting a Lorentz-violating field in cosmology
    Li, Baojiu
    Mota, David F.
    Barrow, John D.
    PHYSICAL REVIEW D, 2008, 77 (02):
  • [38] Cerenkov effect in Lorentz-violating vacua
    Lehnert, R
    Potting, R
    PHYSICAL REVIEW D, 2004, 70 (12) : 125010 - 1
  • [39] Constraining the mass scale of a Lorentz-violating Hamiltonian with the measurement of astrophysical neutrino-flavor composition
    Lai, Kwang-Chang
    Lai, Wei-Hao
    Lin, Guey-Lin
    PHYSICAL REVIEW D, 2017, 96 (11)
  • [40] Constraint on modified dispersion relations for gravitational waves from gravitational Cherenkov radiation
    Kiyota, Satoshi
    Yamamoto, Kazuhiro
    PHYSICAL REVIEW D, 2015, 92 (10):