A generalized eigenvalue problem solution for an uncoupled multicomponent system

被引:4
|
作者
Diago-Cisneros, L. [1 ,2 ]
Fernandez-Anaya, G. [1 ]
Bonfanti-Escalera, G. [1 ]
机构
[1] Univ Iberoamer, Dept Fis & Matemat, Mexico City 01219, DF, Mexico
[2] Univ La Habana, Fac Fis, Dept Fis Aplicada, Havana 10400, Cuba
关键词
D O I
10.1088/0031-8949/78/03/035004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Meaningful and well-founded physical quantities are convincingly determined by eigenvalue problem solutions emerging from a second-order N-coupled system of differential equations, known as the Sturm-Liouville matrix boundary problem. Via the generalized Schur decomposition procedure and imposing to the multicomponent system to be decoupled, which is a widely accepted remarkable physical situation, we have unambiguously demonstrated a simultaneously triangularizable scenario for (2N x 2N) matrices content in a generalized eigenvalue equation.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Generalized eigenvalue problem for interval matrices
    Sarishti Singh
    Geetanjali Panda
    Archiv der Mathematik, 2023, 121 : 267 - 278
  • [42] The Inverse Generalized Eigenvalue Problem for Generalized Antireflexive Matrices
    Yuan, Yandong
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 414 - 417
  • [43] A parallel solution for generalized Eigenvalue problems
    Nool, M
    van der Ploeg, A
    HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1997, 1225 : 1047 - 1049
  • [44] The generalized inverse eigenvalue problem for generalized reflexive matrices
    Liang Maolin
    Dai Lifang
    He Wansheng
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION ICMS2010, VOL 5: APPLIED MATHEMATICS AND MATHEMATICAL MODELLING, 2010, : 42 - 47
  • [45] Fast Approximate Solution of the Non-Symmetric Generalized Eigenvalue Problem on Multicore Architectures
    Benner, Peter
    Koehler, Martin
    Saak, Jens
    PARALLEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), 2014, 25 : 143 - 152
  • [46] Solution of the generalized eigenvalue problem for 3D tensile structures in Stark ES
    Yakushev, V. L.
    Shuk, U. N.
    Simbirkin, V. N.
    Novikov, P. A.
    Filimonov, A., V
    TENSINET SYMPOSIUM 2010 - TENSILE ARCHITECTURE: CONNECTING PAST AND FUTURE, 2010, : 103 - 104
  • [47] SERIES DEVELOPMENT OF SOLUTION OF AN EIGENVALUE PROBLEM
    LOPEZ, A
    ACTA PHYSICA AUSTRIACA, 1966, 21 (03): : 237 - &
  • [48] On the Solution of the Inverse Eigenvalue Complementarity Problem
    Carmo P. Brás
    Joaquim J. Júdice
    Hanif D. Sherali
    Journal of Optimization Theory and Applications, 2014, 162 : 88 - 106
  • [49] SOLUTION OF A COMPLEX QUADRATIC EIGENVALUE PROBLEM
    GIGNAC, DA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (01) : 99 - 106
  • [50] On the Solution of the Inverse Eigenvalue Complementarity Problem
    Bras, Carmo P.
    Judice, Joaquim J.
    Sherali, Hanif D.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (01) : 88 - 106