A generalized eigenvalue problem solution for an uncoupled multicomponent system

被引:4
|
作者
Diago-Cisneros, L. [1 ,2 ]
Fernandez-Anaya, G. [1 ]
Bonfanti-Escalera, G. [1 ]
机构
[1] Univ Iberoamer, Dept Fis & Matemat, Mexico City 01219, DF, Mexico
[2] Univ La Habana, Fac Fis, Dept Fis Aplicada, Havana 10400, Cuba
关键词
D O I
10.1088/0031-8949/78/03/035004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Meaningful and well-founded physical quantities are convincingly determined by eigenvalue problem solutions emerging from a second-order N-coupled system of differential equations, known as the Sturm-Liouville matrix boundary problem. Via the generalized Schur decomposition procedure and imposing to the multicomponent system to be decoupled, which is a widely accepted remarkable physical situation, we have unambiguously demonstrated a simultaneously triangularizable scenario for (2N x 2N) matrices content in a generalized eigenvalue equation.
引用
收藏
页数:4
相关论文
共 50 条