Meaningful and well-founded physical quantities are convincingly determined by eigenvalue problem solutions emerging from a second-order N-coupled system of differential equations, known as the Sturm-Liouville matrix boundary problem. Via the generalized Schur decomposition procedure and imposing to the multicomponent system to be decoupled, which is a widely accepted remarkable physical situation, we have unambiguously demonstrated a simultaneously triangularizable scenario for (2N x 2N) matrices content in a generalized eigenvalue equation.