A class of exactly-solvable eigenvalue problems

被引:17
|
作者
Bender, CM [1 ]
Wang, QH [1 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
来源
关键词
D O I
10.1088/0305-4470/34/46/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The class of differential equation eigenvalue problems -y"(x) + x(2N+2) y(x) = x(N) Ey(x) (N = - 1, 0, 1, 2, 3....) on the interval -infinity < x < infinity can be solved in closed form for all the eigenvalues E and the corresponding eigenfunctions y(x). The eigenvalues are all integers and the eigenfunctions are all confluent hypergeometric functions. The eigenfunctions can be rewritten as products of polynomials and functions that decay exponentially as x --> infinity. For odd N the polynomials that are obtained in this way are new and interesting classes of orthogonal polynomials. For example, when N = 1, the eigenfunctions are orthogonal polynomials in x(3) multiplying Airy functions of x(2). The properties of the polynomials for all N are described in detail.
引用
收藏
页码:9835 / 9847
页数:13
相关论文
共 50 条
  • [21] Entanglement and correlations in an exactly-solvable model of a Bose-Einstein condensate in a cavity
    Alon, Ofir E.
    Cederbaum, Lorenz S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (29)
  • [22] EXACTLY-SOLVABLE COUPLED-CHANNEL MODELS FROM SUPERSYMMETRIC QUANTUM MECHANICS
    Sparenberg, Jean-Marc
    Pupasov, Andrey M.
    Samsonov, Boris F.
    Baye, Daniel
    MODERN PHYSICS LETTERS B, 2008, 22 (23): : 2277 - 2286
  • [23] Exactly solvable percolation problems
    Coupette, Fabian
    Schilling, Tanja
    PHYSICAL REVIEW E, 2022, 105 (04)
  • [24] ASYMMETRIC COEXISTENCE CURVES IN AN EXACTLY-SOLVABLE MODEL OF BINARY-LIQUID MIXTURES
    WALKER, JS
    GHEBREMICHAEL, F
    PURE AND APPLIED CHEMISTRY, 1991, 63 (10) : 1381 - 1386
  • [25] Exactly solvable Schrodinger eigenvalue problems for new anharmonic potentials with variable bumps and depths
    Bryenton, Kyle R.
    Saad, Nasser
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (04):
  • [26] Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for the Feshbach resonance
    Sparenberg, Jean-Marc
    Samsonov, Boris F.
    Foucart, Francois
    Baye, Daniel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (45): : L639 - L645
  • [27] A class of exactly solvable Schrodinger equations
    Karwowski, J
    Cyrnek, L
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 2005, 70 (07) : 864 - 880
  • [28] A class of exactly solvable matrix models
    F. Iachello
    A. Del Sol Mesa
    Journal of Mathematical Chemistry, 1999, 25 : 345 - 363
  • [29] Exactly solvable Schrödinger eigenvalue problems for new anharmonic potentials with variable bumps and depths
    Kyle R. Bryenton
    Nasser Saad
    The European Physical Journal Plus, 135
  • [30] Class of exactly solvable pairing models
    Dukelsky, J
    Esebbag, C
    Schuck, P
    PHYSICAL REVIEW LETTERS, 2001, 87 (06) : 664031 - 664034