A class of exactly-solvable eigenvalue problems

被引:17
|
作者
Bender, CM [1 ]
Wang, QH [1 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
来源
关键词
D O I
10.1088/0305-4470/34/46/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The class of differential equation eigenvalue problems -y"(x) + x(2N+2) y(x) = x(N) Ey(x) (N = - 1, 0, 1, 2, 3....) on the interval -infinity < x < infinity can be solved in closed form for all the eigenvalues E and the corresponding eigenfunctions y(x). The eigenvalues are all integers and the eigenfunctions are all confluent hypergeometric functions. The eigenfunctions can be rewritten as products of polynomials and functions that decay exponentially as x --> infinity. For odd N the polynomials that are obtained in this way are new and interesting classes of orthogonal polynomials. For example, when N = 1, the eigenfunctions are orthogonal polynomials in x(3) multiplying Airy functions of x(2). The properties of the polynomials for all N are described in detail.
引用
收藏
页码:9835 / 9847
页数:13
相关论文
共 50 条
  • [1] Phase Space Path Integral of two Exactly-Solvable Problems on Circle
    Bentag, B.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 258 - 264
  • [2] Two exactly-solvable problems in one-dimensional hyperbolic space
    Burdík, C
    Pogosyan, GS
    LIE THEORY AND ITS APPLICATIONS IN PHYSICS V, PROCEEDINGS, 2004, : 294 - 300
  • [3] Superintegrability and quasi-exactly solvable eigenvalue problems
    E. G. Kalnins
    W. Miller
    G. S. Pogosyan
    Physics of Atomic Nuclei, 2008, 71 : 925 - 929
  • [4] Superintegrability and quasi-exactly solvable eigenvalue problems
    Kalnins, E. G.
    Miller, W., Jr.
    Pogosyan, G. S.
    PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 925 - 929
  • [5] Two exactly-solvable problems in one-dimensional quantum mechanics on circle
    Mardoyan, LG
    Pogosyan, GS
    Sissakian, AN
    SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 155 - 160
  • [6] An improvement of the asymptotic iteration method for exactly solvable eigenvalue problems
    Boztosun, I.
    Karakoc, M.
    CHINESE PHYSICS LETTERS, 2007, 24 (11) : 3028 - 3031
  • [7] Exactly solvable eigenvalue problems for a nonlocal nonlinear Schrodinger equation
    Matsuno, Y
    INVERSE PROBLEMS, 2002, 18 (04) : 1101 - 1125
  • [8] EXACTLY-SOLVABLE CONFINEMENT MODEL OF THE QUANTUM HARMONIC OSCILLATOR
    Jafarov, E. I.
    Nagiyev, S. M.
    MODERN TRENDS IN PHYSICS, 2019, : 245 - 248
  • [9] Exactly-solvable models derived from a generalized Gaudin algebra
    Ortiz, G
    Somma, R
    Dukelsky, J
    Rombouts, S
    NUCLEAR PHYSICS B, 2005, 707 (03) : 421 - 457
  • [10] CLASS OF EXACTLY SOLVABLE 3-PARTICLE PROBLEMS
    FUDA, MG
    PHYSICAL REVIEW C, 1973, 7 (04): : 1365 - 1367