Generalization of Mirsky's theorem on diagonals and eigenvalues of matrices

被引:0
|
作者
Dokovic, Dragomir Z. [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Characteristic polynomial; Companion matrix; Principal minors;
D O I
10.1016/j.laa.2012.06.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mirsky proved that, for the existence of a complex matrix with given eigenvalues and diagonal entries, the obvious necessary condition is also sufficient. We generalize this theorem to matrices over any field and provide a short proof. Moreover, we show that there is a unique companion-matrix-type solution for this problem. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2680 / 2682
页数:3
相关论文
共 50 条
  • [41] A GENERALIZATION OF CHENG'S THEOREM
    Li, Peter
    Wang, Jiaping
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (04) : 519 - 526
  • [42] A generalization of Niho's theorem
    Rosendahl, P
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2006, 38 (03) : 331 - 336
  • [43] The generalization of Gauss's theorem
    Barnett, SJ
    [J]. PHYSICAL REVIEW, 1902, 15 (03): : 172 - 174
  • [44] A generalization of Aronszajn's theorem
    Filippov, VV
    [J]. DIFFERENTIAL EQUATIONS, 1997, 33 (01) : 75 - 79
  • [45] A generalization of Baker's theorem
    Beelen, Peter
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (05) : 558 - 568
  • [46] A generalization of Proth's theorem
    Berrizbeitia, P
    Berry, TG
    Tena-Ayuso, J
    [J]. ACTA ARITHMETICA, 2003, 110 (02) : 107 - 115
  • [47] A generalization of Miyachi's theorem
    Daher, Radouan
    Kawazoe, Takeshi
    Mejjaoli, Hatem
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2009, 61 (02) : 551 - 558
  • [48] A generalization of Boesch's theorem
    Hu, Maolin
    Cheng, Yongxi
    Xu, Weidong
    [J]. DISCRETE MATHEMATICS, 2012, 312 (06) : 1171 - 1177
  • [49] A generalization of Lancret's theorem
    Ciftci, Uenver
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (12) : 1597 - 1603
  • [50] On a Generalization of Voronin’s Theorem
    A. Laurinčikas
    [J]. Mathematical Notes, 2020, 107 : 442 - 451