Zero eigenvalues of a photon blockade induced by a non-Hermitian Hamiltonian with a gain cavity

被引:42
|
作者
Zhou, Y. H. [1 ]
Shen, H. Z. [2 ,3 ]
Zhang, X. Y. [4 ]
Yi, X. X. [2 ,3 ]
机构
[1] Shangrao Normal Univ, Quantum Informat Res Ctr, Shangrao 334000, Peoples R China
[2] Northeast Normal Univ, Ctr Quantum Sci, Changchun 130024, Jilin, Peoples R China
[3] Northeast Normal Univ, Sch Phys, Changchun 130024, Jilin, Peoples R China
[4] Dalian Maritime Univ, Dept Phys, Dalian 116026, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
PARITY-TIME SYMMETRY; OPTICAL CAVITY;
D O I
10.1103/PhysRevA.97.043819
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Under the weak driving limitation, we find that the strong photon blockade can be triggered when all the eigenvalues of the non-Hermitian Hamiltonian are equal to zero, so we name this the zero eigenvalues of a photon blockade induced by a non-Hermitian Hamiltonian. The possibility of realizing single-and two-photon blockades is investigated in the cavity QED system. A negative effective decay rate of the cavity is required, so the gain medium is needed to compensate the intrinsic loss rate of the cavity. The photon antibunching can be realized in both strong and weak nonlinear regimes, which is different from the conventional photon blockade and unconventional photon blockade. Our scheme has paved an avenue towards the study of photon blockades.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Real eigenvalues of non-hermitian operators
    Surjan, Peter R.
    Szabados, Agnes
    Gombas, Andras
    [J]. MOLECULAR PHYSICS, 2024, 122 (15-16)
  • [12] Eigenvalues in the non-Hermitian Anderson model
    Heinrichs, J
    [J]. PHYSICAL REVIEW B, 2001, 63 (16):
  • [13] On the eigenvalues of some non-Hermitian oscillators
    Fernandez, Francisco M.
    Garcia, Javier
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (19)
  • [14] A quantum system with a non-Hermitian Hamiltonian
    Bebiano, N.
    da Providencia, J.
    Nishiyama, S.
    da Providencia, J. P.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [15] Fermionic Model with a Non-Hermitian Hamiltonian
    Bebiano, N.
    da Providencia, J.
    Nishiyama, S.
    da Providencia, J. P.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2020, 50 (02) : 143 - 152
  • [16] Physical meaning of non-Hermitian Hamiltonian
    Chen, ZJ
    Ning, XJ
    [J]. ACTA PHYSICA SINICA, 2003, 52 (11) : 2683 - 2686
  • [17] Fermionic Model with a Non-Hermitian Hamiltonian
    N. Bebiano
    J. da Providência
    S. Nishiyama
    J. P. da Providência
    [J]. Brazilian Journal of Physics, 2020, 50 : 143 - 152
  • [18] A physical interpretation for the non-Hermitian Hamiltonian
    Jin, L.
    Song, Z.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (37)
  • [19] Physical meaning of non-Hermitian Hamiltonian
    Chen, Zeng-Jun
    Ning, Xi-Jing
    [J]. Wuli Xuebao/Acta Physica Sinica, 2003, 52 (11):
  • [20] REFINED PERTURBATION BOUNDS FOR EIGENVALUES OF HERMITIAN AND NON-HERMITIAN MATRICES
    Ipsen, I. C. F.
    Nadler, B.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (01) : 40 - 53