Time series AR model parameter estimation with missing observation data

被引:1
|
作者
Ding, Jie [1 ]
Chen, Xiaoming [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
关键词
AR models; recursive identification; parameter estimation; convergence properties; extended least squares; missing data;
D O I
10.1109/WCICA.2008.4593847
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on identification problems of auto-regression (AR) models with missing output observation data. The standard least squares algorithm cannot be applied to the AR models due to the missing output data. To estimate the parameters of the AR models, we employ the polynomial transformation technique to transform the AR models into the auto-regression moving average (ARMA) models, which can be identified from available scarce observation data. Then, we analyze the convergence properties of the algorithm in details and give an example to test and illustrate the algorithm involved.
引用
收藏
页码:5632 / 5636
页数:5
相关论文
共 50 条
  • [41] Influences of observation errors in eddy flux data on inverse model parameter estimation
    Lasslop, G.
    Reichstein, M.
    Kattge, J.
    Papale, D.
    BIOGEOSCIENCES, 2008, 5 (05) : 1311 - 1324
  • [42] ESTIMATION OF AR(1) PANEL DATA MODELS WITH MISSING OBSERVATIONS
    Issa, Mohamed Khalifa Ahmed
    Mahmoud, Mahmoud Mohamed Abdelwahab
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 63 (01) : 109 - 117
  • [43] PELP: Accounting for Missing Data in Neural Time Series by Periodic Estimation of Lost Packets
    Dastin-van Rijn, Evan M.
    Provenza, Nicole R.
    Vogt, Gregory S.
    Avendano-Ortega, Michelle
    Sheth, Sameer A.
    Goodman, Wayne K.
    Harrison, Matthew T.
    Borton, David A.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [44] Operational Modal Parameter Estimation from Short-Time Data Series
    Arora, R.
    Phillips, A.
    Allemang, R.
    TOPICS IN MODAL ANALYSIS, VOL 10, 2015, : 183 - 198
  • [45] Parameter Estimation of Heavy-Tailed AR(p) Model from Incomplete Data
    Liu, Junyan
    Kumar, Sandeep
    Palomar, Daniel P.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [46] Online Time Series Prediction with Missing Data
    Anava, Oren
    Hazan, Elad
    Zeevi, Assaf
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2191 - 2199
  • [47] Inference of stochastic time series with missing data
    Lee, Sangwon
    Periwal, Vipul
    Jo, Junghyo
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [48] Missing observations in observation-driven time series models
    Blasques, F.
    Gorgi, P.
    Koopman, S. J.
    JOURNAL OF ECONOMETRICS, 2021, 221 (02) : 542 - 568
  • [49] Spectral modeling of time series with missing data
    Rodrigues, Paulo C.
    de Carvalho, Miguel
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (07) : 4676 - 4684
  • [50] Asymptotic analysis of an algorithm for parameter estimation and identification of 1-b quantized AR time series
    Krishnamurthy, V
    Poor, HV
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (01) : 62 - 73