Time series AR model parameter estimation with missing observation data

被引:1
|
作者
Ding, Jie [1 ]
Chen, Xiaoming [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
关键词
AR models; recursive identification; parameter estimation; convergence properties; extended least squares; missing data;
D O I
10.1109/WCICA.2008.4593847
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on identification problems of auto-regression (AR) models with missing output observation data. The standard least squares algorithm cannot be applied to the AR models due to the missing output data. To estimate the parameters of the AR models, we employ the polynomial transformation technique to transform the AR models into the auto-regression moving average (ARMA) models, which can be identified from available scarce observation data. Then, we analyze the convergence properties of the algorithm in details and give an example to test and illustrate the algorithm involved.
引用
收藏
页码:5632 / 5636
页数:5
相关论文
共 50 条
  • [31] Forecasting time series with missing data using Holt's model
    Bermudez, Jose D.
    Corberan-Vallet, Ana
    Vercher, Enriqueta
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (08) : 2791 - 2799
  • [32] Parameter Estimation of Varying Coefficients Structural EV Model with Time Series
    Su, Yan Yun
    Cui, Heng Jian
    Li, Kai Can
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (05) : 607 - 619
  • [33] Parameter Estimation of Varying Coefficients Structural EV Model with Time Series
    Yan Yun SU
    Heng Jian CUI
    Kai Can LI
    Acta Mathematica Sinica, 2017, 33 (05) : 607 - 619
  • [34] Parameter estimation of varying coefficients structural EV model with time series
    Yan Yun Su
    Heng Jian Cui
    Kai Can Li
    Acta Mathematica Sinica, English Series, 2017, 33 : 607 - 619
  • [35] Parameter Estimation of Varying Coefficients Structural EV Model with Time Series
    Yan Yun SU
    Heng Jian CUI
    Kai Can LI
    Acta Mathematica Sinica,English Series, 2017, (05) : 607 - 619
  • [36] DPER: Direct Parameter Estimation for Randomly missing data
    Nguyen, Thu T.
    Nguyen-Duy, Khoi Minh
    Nguyen, Duy Ho Minh
    Nguyen, Binh T.
    Wade, Bruce Alan
    KNOWLEDGE-BASED SYSTEMS, 2022, 240
  • [37] Likelihood identifiability and parameter estimation with nonignorable missing data
    Zheng, Siming
    Zhang, Juan
    Zhou, Yong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (04): : 1190 - 1209
  • [38] Parameter Estimation Algorithms for Missing-Data Systems
    Ding, Feng
    Ding, Jie
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 5032 - 5036
  • [39] Solution for a time-series AR model based on robust TLS estimation
    Tao, Yeqing
    He, Qiaoning
    Yao, Yifei
    GEOMATICS NATURAL HAZARDS & RISK, 2019, 10 (01) : 768 - 779
  • [40] Bayesian Estimation for Fully Shifted Panel AR(1) Time Series Model
    Kumar, Jitendra
    Agiwal, Varun
    THAI JOURNAL OF MATHEMATICS, 2019, 17 : 167 - 183